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FOREWORD

This study was conducted by the General Electric Company,
LOOO N, W. 39th Street, Oklahoma City, Oklahoma under Contract
AF 41 (609)-264k4, Tesk 630103, with the USAF School of Aero-
space Medicine, Aerospace Medical Division, Brooks Air Force
Base, Texas. The Contract Monitor was First Lieutenant D. J.
Lehmiller, USAF, Oculo-Thermal Section, Ophthalmology Branch
(SMKOR). The study was carried out between 1 Nov. 1964 an
31 Aug. 1965. This report was submitted for publication ;n
20 Dec. 1965,

Arthur L. Korotkin was principal investigator until 30
April 1965; Robert S. Czeh was principal investigator there-
after,

The authors wish to acknowledge the assistance of Chris-
topher W. Zinn, Laurence Oliver, Joseph Dasbach, and Paul G.
Rasmussen.

Publication of this report does not constitute Air Force
approval of the reports findings or conclusions, it is pub-

lished only for the exchange and stimulation of ideeas.
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ABSTRACT

In planning certain military missions it ié desirable
to know the extent to which vision may be impaired by the
flashblindness that can result from the intense light of a
nuclear explosion., This report describes an attempt to
provide assistance to such planning by constructing a mathe-
maticel model of flashblindness. The literature was sur-
veyed to determine whether or not the construction of a
model was feasible. Using selected data, two equations
were developed for predicting recovery time from flash
energy, display luminance, and display visual ecuity. The
prediction errors made were determined in a few situations
and compared with the errors made by other prediction tech-
niques, Limitations of the applicability of the equations

were noted,
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1.0 INTRODUCTION

A nuclear detonation creates a fireball of such high tempersasture and
luminance level as to comstitute a serious hazard to vision well beyond the
distance at which blast, shock, or radiation have any significant efflects.
Approximately 35 per cent of the energy in a typical air burst, at an
altitude below 100,000 feet, is thermal rediation (Glasstone, 18). There-
fore, a large burst of say two megatons can produce burns of the rabbit
retina at a distance of 370 miles (Brown, 6), and even a small burst of
100 kilotons or so can produce threshold retinel burns at 14 miles (Ham
et &1, 19).

In addition to the threat of permasnent eye damsge, and beyond distances
at which eye damage can result (Parker, 34), there is a second visual hazard
from nuclear detonation -- flashblindness., Given that the atomic fireball
in its early stages can be as much as 100 times as bright as the sun (Byrnes
et al, 9), a temporary loss of visual adaptation can result from the sudden,
intense increase in ambient illumination that accompanies a burst. Severin,
Newton, & Culver (40) point out that the inability to read aircraft instru-
ments for as long as 60 seconds can well jeopardize a bombing mission and
Hill & Chisum (22) indicate that flashblindness for as short as 5 seconds
can have serious consequences for the interceptor pilot, depending on the
particular maneuver being underteken at the time of onset of flashblindness.

A grest deal of research has been devoted in recent years to the study
of flashblindness and to the development of methods and devices for protecting

against flashblindness. A nuvmber of protection methods and devices have
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been suggested; for example ««
Monocular occlusion (Browm, 6)
Increase in display luminance (Brown, T; Metcalf & Horn, 30)
Pupillery mioeis (Minners, 33)
Specialized filter gogzles (Plum & Crillz, 38)
Optical goggle systems (Sneed, Knight, & Hartouni, 44)

Explosive-lens goggles (Chisum & Hill, 12; Laxar, 2T; Lowry, 29;
Thomsen,

Electromechanically-operated goggles (Wayne-George Corp., 50;
USAF, 55)

Louvred-lens goggles (Timm, L7)

Explosive optical shutters (Britten, 4; Pisano, 36)
Photochromic filters (Allinikov, 1; Bowman et al, 3; Fox, 15)
Phototropic filters (Harries, 20; Parkhurst, 35)

Stressed plate shutter (Hauser et al, 21)

Photoconductive electroluminescent films (Sneed, Sacks,
& Knight, 45)

Apparently, no present device or method is entirely satisfactory. The
devices may for example, respond too slowly, or remain too transparent, or
can be used only once. One of the difficulfies mey be that the basic
studies of flashblindness, upon the results of which protective develop-
ments are based, have largely been independent and uncoordinated efforts
directed at some problem other than protection. As Parker (34) points out,
there is obviously a hazard, but knowledge of 1t is qualitative rathér than
quantitative; a mathematical model which integrates much of the existing data

would be useful in evaluating existing and proposed devices and in writing

il




specifications for devices that are to be developed. The study reported
here was accomplished with a view to providing such a mathematical model.
The study was accomplished in three Phases. Phase I consisted of a
literature search to identify those studies which provide experimental
data of poussible use in developing the model. Phase II was devoted to
identifying the relevant independent variables and to converting those

variasbles to common units. Phase III was devoted to the development of

the model itself,

i




2,0 LITERATURE SURVEY

The Statement of Work provided a number of titles as a starting point.

In addition, searches were made at the Defense Documentation Center, the

- Medical Index at the National Library of Medicine, and in the Psychological
Abstracts, and current issues of relevant jJournels, whose articles would not
yet have been indexed or abstracted, were also searched; the Jourmals
searched were, primarily, the various Journels published by the American
Psychologicel Association, the Journal of the Optical Society of America,

the Journal of the Human Factors Society, and the Journal of Engineering

a% Psychology. The literature search was supplemented by visits to

1 Ohio State University's School of Optometry and to the U, S. Naval Air
Development Center's Vision Laboratory.* The visit to Mrs. Miller's
laboratory at Ohio State was especially valuable; she supplied some unpublished
results from a very recent study which, as it turned out, supplied most of the
data on which the model had to be based.

It is believed that almost all the relevant literature available by the
end of 1964 was located. Approximately 200 publications provide quantitative
data and a great many others discuss flashblindness in qualitative terms or
deal with protective methods or devices. Of the 200, only 23 provided data
that might be useful for the model; the remainder fail to provide data in a
detailed or complete enough form.

Typical results from these 23 studies are plotted on the following

pages. In each case, recovery time (on the ordinate) is plotted against

* Our sincere appreciation to G.A. Fry and Norma D, Miller of OLio State and
to J.H. Hill of NADC for their help and suggestions.
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total flash energy (on the abscissa), and any other variables (e.a.,
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target or displey luminance) are parameters. The units of measurement have
been standardized as follows. Recovery time is in log ﬁeconds. Target or
display luminance is in millilewberts (mL) or log mL. Visuel scuity is the
reciprocal of the visual angle in minutes subtended by the critical detail of
the target. Flash energy is given in log troland-seconds or in lambert-
seconds. (It had been hoped originally to express flash energy only in
troland-seconds, but this was not possible. Few studies provide the infor-
mation needed to convert to trolands?) Most luminence unit conversions were
made with the aid of the conversion table given in Chapanis (10). A few
studies describe the flash in lux; conversion of the cornesl illuminance to
source luminance was made by means of Equation (7i) in Jenkins & White (26).%*
Figure 1, replotted from Miller (32), swmarizes the results of
Russell (39), Metcalf & Horn (30), and Whiteside (52). With respect to the
variables flash energy and target luminance, these studies tell much of the
story; recovery time increases with flash energy for a time, and then tends
to level off; and recovery time increases as target luminance decreases. At
flash energies below Russell's lowest (i.e., below approximately 1 L-sec),
recovery time becomes shorter still, and may level off as a minimum time is
approached; data from Severin, Newton, & Culver (40, 41) plotted in Figure 2
show this (the abscissa is plotted on log paper to stretch out the scale).
Brown (8) suggests that there is a minimum recovery time equal to approxi-

mately 0.2 sec. which corresponds to visual reaction time and that the

* Pupil size can, of course, be estimated. Indeed, such an estimate had to

ve made to provide the troland-second model with enough data. This is
described later,

** The number of different units used to describe the flash is, unfortunately,
quite large, and quantitative comparison of results 1s virtually impossible
without converting to some common unit. Vos and his associates (hgfocall
the situation "really embarrassing."
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tendency for recovery time to level off at the higher energles is due to
maximum possible bleaching of the retina's photosensitive substances.
Miller (32, and also a more recent unpublished study), using flash energies

above 100 L-sec., finds that recovery time increases, but with negative

acceleration, as flash energy incresses up to approximately 450 L-sec.,
and then remains essentially constant as flash energy increases further to

approximately 1420 L-sec., see Figure 3. Metcalf & Horn (30), Chisum &

i

b
g
s
5
i

H1ll (11), and H1ill & Chisum (23) obtained results that are generally

consistent with the foregoing over a range of flash energies from approxi-

R TR

mately 3 log td-sec to approximately 8 log td-sec; Figures 4 and 5 present
these data. As flash energy is increased still further up to 1.57 x 105
L-sec, recovery time may agaln show positive acceleration; Figure 6
illustrates this with data from Whiteside & Bazarnik (54). Brown (8)

suggests that this final positive acceleration reflects real, but reversible,
retinal damage; ultimately, irreversible demage and infinite recovery time
would result.

It would seem therefore that recovery time varies with flash energy
in the following manner. At very low flash energies, recovery time increases
with positive acceleration as flash energy increases; the recovery time curve
soon inflects and begins a period of negative acceleretion and may become
quite flat at high energy levels; ultimately, the recovery time curve inflecte
again and shows a final period of positive acceleration once more, ending
presumably in infinite recovery time when irreversible retinal damage occurs.
The effect of target luminance is to raise or lower the curve as target

luminance decreases or increases since recovery time varies inversely with




®,x - Miller (32): 16.2' test letter;
X represents decreased flash durations;
« pepresents decreased luminance

for 1.4 msec duration. . { 0.0
[ ©- Miller (unpublished date, see M \ -u_—.—OT L
Appendix G): 16.2' test -/ ong _ g’
i letter; flash duration kept 7  ~ . 011mL
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2.0 | &= - 0.0
7 ,'\~ ’/ !‘h~ o 06
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- //B.l6mL
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]
I
| §

Log Recovery Time (seconds)

2, 23mL
= s’—-'——"
l.O -
r 30.0mL
-l ./
_ ® @131lmL
.5 4 2 I 2

6.2 6.4 6.6 6.8 7.0 7.2 T.h4 7.6 7.8 8.0
Log Flash Energy (troland seconds)
28.2 Flash Energv (lambert seconds) 1782

Figure 3. Recovery time as a function of flash energy and target luminance,
The flattening out above T.4 log troland-seconds (450 L-sec.) is
clear,
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target luminance; the cuwrve 1s not displaced by target luminance uniformly over
its whole extent, however, since there is some anchoring at very low values

of flash energy (where recovery time is equal to the reaction time of the
visual system) and at very high values of flash energy (where recovery time
becomes infinite as a result of retinal damage). Brown's (8) representation
of the situation is reproduced here in Figure 7. The conclusions apparently
hold over a variety of experimental conditions summarized in Table I.

It should be noted, however, that there is some question concerning at
least the location of the upper (high flash energy) end of the curve and
possibly concerning the positively accelerated behavior of the curve, even if the
intuitive appeal of ‘the positive acceleration is admitted, The data at the
high end are from Whiteside and Bazarnik (54). But Whiteside and Bazarnik's
light measurements may have been incorrect. Vos, Frederikse, Walraven, &
Boogaard (49), drawing on retinal burn data, suggest that the light measure-
ments may indeed have been wrong by a factor of 100 or more. If this is so,
the curves of Figure 6 should all be moved at least two log-cycles to the left.
Whiteside & Bazarnik's maximum energies would then be approximately 1.57 x 103
L-sec., very nearly equal to Miller's maximum energies. But Miller's recovery
time curves are virtually flat et this energy level (cf. Figure 3), vhile
Whiteside and Bazarnik's would be showing positive acceleration.

Several researchers have studied the effect of target visual acuity on
recovery time and have found, in general, that recovery time increases as
the visual acuity required for the target increases. Figure 8 from Brown (5)
shows the results obtained with taergets whose visual acuity requirements were

0.33 and 0.13 respectively., Brown's targets were gratings of alternating

13
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black and white bars of equal width; visual acuity is the reciprocal of the
visual angle subtended in minutes by any one bar. Miller (32) obtained
similar results, as shown in Figure 9. Her targets were individual Snellen
letters; visual acuity is therefore given by the reciprocal of one-fifth the
visual angle in minutes subtended by the entire letter. Brown (7) has also
shown that target visual acuity interacts with target luminance. Figure 10
shows the situation. At low target luminance, recovery time is shorter for
targets requiring less visual acuity, while at high target luminance, the
effect of visual acuity is virtually nil; obviously, however, the effect of
visual acuity cannot be completely nil, at high luminances, since the target
must be one that can be perceived under normal conditions. But see Figure 8.

The studies summarized thus far all delivered the flash to the fovea
and measured recovery time with the target viewed through the flash's after-
image. Whiteside (53) delivered the flash to the parafovea and measured
recovery time with adaptometer targets viewed with the fovea and compared
these with recovery times while viewing targets through the afterimage; the
data were gathered during an atomic weapon test, with the flash supplied by the
burst. Table II summarizes the results. At each target luminance, the recovery
time with the target viewed with the fovea is shorter than the recovery time
with the target viewed through the afterimage; and, of course, recovery time
increases ags target luminance decreases.

Severin and his associates (42,43) have studied the effect of natural
pupil size on recovery time. Since the pupil opening (whether that pupil be
natural or artificial) controls the amount of energy delivered to the retina,

manipulation of pupil size, given a constant-energy flash, should yleld results
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Log Recovery Time (seconds)
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Figure 9. Recovery time as a function of flash energy and target visual
acuity. The targets are Snellen letters at 0.07 mL.
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similar to those obtained by manipulation of a flash source, given a
constant pupil size, Severin et al's results do not coincide with these
expectations. Using drugs to dilate or comstrict their subjects' pupils,
the time required to perceive an adaptometer terget after a flash was
measured ylelding the results shown in Figure 11. Within each pupil size
condition, recovery time increases as flash energy increases, and recovery
time for brighter targets is less than for dimmer targets, as expected.

But the results obtained between pupil size conditions are surprising.

For each target luminance, the small pupil curve should be continuous with
the large pupil curve. Instead, the curves are not only discontinuous but
in addition differ from one another only a very little; indeed, for the
more dimly 1lluminated target, the average recovery time associated with the

small end large pupil curves do not differ significently.
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3.0 CONCLUSIONS BASED ON THE LITERATURE SURVEY

3.1 The most effective determiners of reccvery time appear to be flash
energy, target luminance, and target visual acuity. Recovery time increases
as flash energy and target visual acuity increase, and decreases as target
luminance increases. Visual scuity and target luminance may interect such
that the effect of aculty lessens as target luminance increases.

3.2 Given that the eye is not damaged, recovery time changes but
little at flash energies between 1400 L-sec. (and perheps less) and 1.37 x
10“ L-sec., for the targets, target luminances, and target visual acuities
used in these studies. At still higher flash energies, recovery time pro-
bably increases agein (and possibly very rapidly), but this may be due to
actual, though reversible, retinal demsge; caution is necessary here, though,
since objections can be raised concerning the study on which this conclu-
sion is based.

3.3 As would be expecﬁed because of the wide variety of flash sources,
targets, subjects, experimental procedures, etc., used in these studies, the
various findings differ from one another in specific details. But in all but
one case, the detailed findings are consistent with the main conclusions
stated above., There is, indeed, enough consistency to warrant an attempt
at generating a mathematical model to predict recovery time from flash

energy, target luminance, and target visual acuity.
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4.0 SELECTION OF DATA FOR AND SUMMARY OF THE MODELING EFFORT

The modeling effort was defined as one of determining an equation which
can be used to predict recovery time from virtually any arbitrary set of flush
energy, target luminance, and target visual aculty conditions. Multiple
regression techniques were chosen to fit a mathematical function to the
data,

This pair of decisions eliminated certain studies from tie moedeling
effort immediately. Whiteside & Bazarnik (54) and Whiteside (53) cannot be
used since they provide no exact data copcerning the visual acuities of their
targets. Chisum & Hill (11), Hill & Chisum (22), Metcalf & Horn (30) and
Russell (39) are eliminasted since their data are presented only in graphs
which cannot be read at all accurately.

It was also decided to eliminete data which were inconsistent with the
general trend of the findings or about which there can be some valid question
raised as to procedure, calibration, etc., Whiteside & Bazarnik (54) is there-
fore omitted because of Vos et ul's (49) objections to source calibration.
Severin et al (42) obtained results (of. Figure 11) very much different thean
expected; just what mechanism 1s involved in producing their deviant results
is not known, but it almost certeinly has to do with the drug-induced pupil
constriction or diletion. The study certainly deserves replication and exten-
sion to determine whether or not manipulation of the natural puplil does in fact
have effects beyond those expected from increasing and decreasing retinal illumin-
ance by manipulatior of the flash source, but for the present the study has been
eliminated from the model-building effort to avoid perturbing tue model unduly.
The same researchers also used drugs to dilate the pupil in an earlier study

(Severin ét al, 40,kl1), and this study also was therefore eliminated.
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Miller's late:. data were used as the basis for the modeling effort.*
Flgure 3 is typical of the date used. To provide a great enough range of
flash energiles, data from Brown (5,7) were also included.

Two power series function equations have been developed, one using
lembert-seconds as the main independent variable, the other using troland-
seconds as the main independent variable. For the first, Miller's troland-
seconds were transformed to lambert-seconds using an exact conversion. Brown's
flash energies, given in foot-lawbert-seconds, were converted to lambert-
seconds and to troland-seconds. Since Brown does not present datae concern-
ing his subjects' pupils an exact conversion to troland-seconds was not
possible. However, estimates of the pre-flash pupil size, and of the change
in pupil size during the flash, were made in order to convert to troland-
seconds. ‘

An attempt was also made to fit Miller's data with a Gompertz function
(Lewis, 28), an equation suggested by Brown (8) was examined, and an approach
to recovery time prediction suggested by Miller® was studied. There vas also
a brief examination of the influence of intersubject differences. Theze

various efforts are described in the following sections.

¥ T.ese data are unpublished, but were supplied to us by Mrs. Miller, for
vhich we are grateful. The data are displayed in Appendix G.

** personal communication.
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5.0 MATHEMATICAYL MODEL DEVELOPMENT

The problem is that of finding s function relating flash blindness
recovery time to the three varisbles, source energy, recovery target
lunmi.ance, and target visual acuity. Multiple linear regression (m.l.r.)
programs were used to fit a mathematical function to 1306 data points. The
accuracy with which the function fits the data is determined by calculating
the standard error and the coefficient of determination. Variation between
subjects was taken to be random and the Bunsen-Roscoe Law was assumed to
hold.

The source energy is expressed in two different units (lambert-seconds
and troland-seconds); an equation was developed for each.

The data used are in Appendix G, Tables G.l through G.4 (1049 data
points from Miller), Appendix B, Table B.l, and Appendix C, Table C.l
(25T data points from Brown). The Multiple Linear Regression programs
used (G.E. No. CD 225D3.001) were coded by the General Electric Company
Computer Department. Version II of this program uses the stepwlse procedure
outlined by Efroymson (1l4) and described briefly in Appendix M.

Brown's adapting flash energies in ft-lamberts were converted to
lambert-seconds and to troland-seconds. Miller expresses the adapting
flash energy in troland-seconds. The following equation was used for

converting between lambert-seconds and troland-seconds:

foT I, at =f°T (3.183 X 103) I A(t)at (1)

A (t) is pupil area as a fun~tion of time

IT 1s the retinal illuminance in trolands

28
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;L is the source intensity in lamberts.

If the Busen-Roscoe Law holds, then Equation (1) can be written in the

following form:

I = 3.183 X 10° IJOT A (%) at

(2)

For the duration of the flash, Miller restricted the pupil size with an

optical stop; hence, the pupil area A(t) was constant and equal to the area

2

of the optical stop, 17.63 mm~. In this case Equation (2) may be written as

and

=3
]

3.183 X 103 A(t) B,

ET = ITT

EL = ILT =L = sec

td - sec

given that A (t) = 17.63,
- 3
ET = 56.116 X 10 EL
and Log ET = 4,74909 + Log EL
Rearrarging terms,
E =LogE_ - 4.Th
Log L og B, T4909
Equation (3) may also be derived as follows:
2
Trolands = (candles/m ) (A (t))
But:
Candle/m? = (3.183 X 103) Lemberts

and therefore
Trolands - (3.183 X 103) Lamberts (A(t))
and

3
ET = (3.183 X 107) EL (A(t))

(3)

29




rearranging terms,

] Ep
I o TR N E))

Substituting A(t) = 17.63 mm® and teking logarithms

Log E; = Log By - 4.7h903
Equation 3 was used to convert Miller's data to log E (lambert-seconds).

The procedure for tramsforming Brown's data to troland-seconds was as
follows. For the duration of the flash Brown permitted the naturel pupil to
act as a stop. However, Brown's subjects were exposed to the flash for

irtervals of 0.90 seconds (5) and for 0.95 seconds (7), and therefore the

stop (pupil) area A(t) decreased with time. Since his subjects were dark
adapted for about 15 or 20 minutes, it was assumed that the pupll was at its
maximum of about 50 mm® initially. The upper curve in Figure 12 (taken

from Bartley, 2, Figure 65) represents the change in pupil area as a

function of time for exposure to light of 100 millilamberts., For light of a
higher intensity, a more rapid pupll response would be expected, as is shown
in the lower curve of Figurel2. This lower curve was derived in the

following manner., The first point is defined by the dark-adapted pupil.

The last point comes from Figure 13, which is extrapolated from Bartley's
Figure 64. (That the eye will not tolerate 100 Lamberts for six seconds is
immaterial; a theoretical end-point is all that is needed here.) Given the first
and last points, the lower curve in Figure 12 was simply sketched in "pgrallel"

to the upper curve.” The mean value of pupil area was found by integrating

# There are certainly some errors here. For example, the pupil response
latency (possibly as short as 120-140 msec., according to studies now under-
way in Miller's laboratory) has been ignored. In addition, the rate of re-
sponse shown in the lower curve of Figure 12 may be too low. Some of
Miller's Ss give a maximum constriction in 1 sec. or so.
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under the curves in Figure 12 for the flash intervals to which Brown's
subjects were exposed and then dividing by the time intervel as indicated

by the following expression:

T
‘j: A(t) at
average pupil area = T

The trapezoidal rule was used to evaluate the integral. Table III

lists the values obtalned.
TABLE III

ESTIMATES OF AVERAGE PUPIL AREA FOR BROWN (5,7)

Intensity Time Average
Interval Areg

(log nl) (seconds) (zm®)
2 0.95 30.7763

5 0.95 28. 4079

2 0.90 32.T7111

5 0.90 29.0556

The time intervals selected were those employed by Brown. Average
pupil areas were obtained for the various intensities used by Brown by linear
interpolation in Tsble III., The following function was used to convert the
gource energy values in Biown's data to troland-seconds.

T
= 3183)(103 j; ﬁf) =
- 3 B, =g

En

The converted values of source energy are listed in Table IV.
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TABLE IV

ESTIMATES OF SOURCE ENERGY IN TROLAND-SECONDS FOR BROWN (5,7)

T = 0.95 sec.

EL Log ET
(L-sec,) (E_ troland-sec.)

102.3 6.96615
32.3 6.48876
10.23 5.99734
3.23 5.49915
1,023 5.00061
0.323 4,50018

T = 0.90 sec.
9%.8 6.9519k
48,4 6.67548
12.1 6.09377

Brown's and Miller's data combined gave 1306 data points.

The variables used in the regression analysis are functions of the recovery
time, source energy, recovery target luminance and visual acuity. The actual
function used in the regression analysis can be described as follows:

Y=b +b X +b, X, +...+tb X (5)
The non-linear equation used in the analysis 1s made equivalent to the linear

equation above by the following transformation:

Y =1og T , T is recovery time in seconds.
Xl = log L ’ L is recovery target luminance
o in millilamberts

X, = (log L)

x3 = (log L)3

X, = A the visual acuity required for the target

X = A7

X = &7

X7 = Log Ep, where Ep 1s the source energy in troland-seconds.

x8 = (log ET)Z

X§ = (log ET)3 34
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The source energy was ulso expressed In lambert-seconds which alters the

last three variallles as follows:

X
*g

X
9

i

log EL’ where EL is the source energy in lambert-seconds,
2
(log &)

3
(log EL)

i

In the stepwise procedure (14 and Appendix M), intermediate regression
equations are obtained. The results for each step are listed for the two
cases considered in Table V and Table VI, The standard error of the regression
equation and the coefficient of determination are used as a measure of the
accuracy with which the equation fits the data. The deviations of measured
values from values obtained by the regression equation are measured by the
standard error, y. The fit is good ifTy is small and Rf is approximately
one. Values of these measures are listed in Table V and Table VI for each
step in the regression analysis, After the first few steps the standard error
decreases slowly and R2 approaches 1.00.

The dependent variable in Equation (5) is the logarithm of the recovery
time. From this function of the recovery time, it is possible to determine
in a convenient way the fractional or percentege standard deviation in the
recovery time itself. The output of the multiple linear regression program
includes the standard deviation of the logarithm of the recovery time. The

following derivation relates the standard deviation of the logarithm of the

recovery time and the percentage standard deviation in recovery time.
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The percentage standard deviation in the recovery time has been deter-
mined at each step in the regression programs and is listed in the lest
cec '-mn of Table V and Table VI.

The matrix inversion was a source of some difficulty. In an effort to
obtain as good a fit as possible, power series of the fifth degree were
used, initially, in the regression anslysis. The practical problem of
maintaining accuracy in the matrix inversion became the critical limiting
factor. With 13 terms in Equation 5, the matrix inversion was not sufficiently

accurate. (The accuracy of the matcix inversicn was checked bty multiplying
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the initial matrix and its inverse and comparing with the unit matrix.)
With only 10 terms, however, the inversion was satisfactory, and it is

this 10 term analysis which yielded the coefficients listed in Tables V and
VI.

The elements of the product matrix associated with Table V are
listed in Table VII. (The first subscript refers to the row and the
second subscript refers to the column in the matrix with elements C (i, J)
vhere A Afl = C,) Table VIII lists the elements of the product matrix
associated with Table VI, The product matrices differ very little from the
unit matrix and therefore the matrix inversion is sufficiently accurate in
both cases,

Figure 14 is a typical plot of the function with source energy
expressed in troland-seconds. The 10U bounds are indicated by the dotted
lines, The distribution of applicable data points from Brown's data and
Miller's data about the function is shown on the graph. The controlling
influence of Miller's data on the regression equation is evident and is
clearly due to the unequal amount of input data from the two experiments.
Brown's data has & steeper slope than the regression function in this case.
(Indeed, the percentage standard deviation for predicting Brown's data alone
is on the order of 50%.) Figurel5 is a similar plot for the source energy
expressed in lambert-seconds.

It should be noted that the validity of the regression function in
predicting recovery time is questionable outside the bounds of the experi-

mental data. These bounds are listed in Table IX,
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TABLE VII _

PRODUCT MATRIX AA = C

Eq (TROLAND-SECONDS)
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TABLE IX

EXPERIMENTAL DATA BOUNDS

Minimum Maximum

Values Values
Visual Acuity (A) 0.08 0.33
Source Energy (ET) 3.164x104 tdrsec, 8.913x107 td.-sec.
Source Energy (EL) 3.23::10'1 lambert-sec. 1.588x103 lambert-sec.
Recovery Target Luminance (L) 7.586x1073 mL. 1.914x104 mL,
Recovery Time (T) 2.90x10" ! sec. 2.245x102 sec.

But within these bounds, recovery time T can be predicted
fcr values of source energy, recovery target luminance, and visual
acuity by the following functions.

Case 1 - Source energy Ep 1in troland-seconds,
Recovery target luminance L in millilamberts,
Visual Acuity A in minutes ) ,
Recovery time T in seconds:
Log T = 7.0009220 - .34826531 log L + .0086512441 (log L)2
+ .0099458175 (log L)3 - 1,1146726 A + 4.5215008 Az
-1.4977985 A3 - 4.1308911 log E; + .76585211 (log ET)Z
- .042097964 (log ET)3 (6)
Case 2 - Source energy EL in lambert-seconds,
Recovery target luminance L in millilamberts,
Visual Acuity A in minutes -1 ,

Recovery time T in seconds:
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log T = .29860996 - .34750866 log L = 0084365343 (log I;.)2

+.010592209 (log L)> - 1.6884846 A + 5.8457139 A°

-1.8571620 A3 + 37525493 log B, + 0.73137hok (log E )°

- 023532257 (log E )> (7)
If'?‘represents the recovery time predicted by the equation and T represents
the corresponding measured value, then T will be within the following bounds
approximately 68 of the time.

0.64T& 1 < 1,367
A significant emount of the 3% error in predicted recovery time is undoubtedly
due to subject differences.

To get some indication of how well the equations predict in some
situation other than the ones used to develop the equations, it was decided
to compute recovery times for a study reported by Chisum & Hill (11). The
experiment reported in their Figure 4 and tabled here in Appendix Table D.2
was used. Input data from this experiment were substituted in the equation.
The results are listed in Table X and compared with experimental values, It
is noted that the experimental results are an average of three response
measures for a single subject. Two points were excluded because they were
much below the lower bound of source energy used in obtaining the regression

function. The percentage standard deviation for these data is
r% = 00%9 = %o%o

[
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Predicted Recovery Times Compared to Measurements made by Chisum and Hill

(ml)
0.178

1.0

178

TABLE X

Visual Acuity = 0,33

T
E
(td.-sgc.) (sec.)
3.2x10° 19.11
1.0x107 31.9
8.8x10° 9.933
2.5x10° 5.357
8.8x10% 3.490
2.5x10% 2.500
4.5x108 22.50
1.4x10° 12.60
4.5%102 7.087
1.4x10° 4.167
4.5%10% 2.835
1.4x10% 2.349
4.5x10° 2.576
1.0x107 17.48
1.0x10° 5.805
8.8x10° 5.437
1.0x10° 2.001
8.8x10% 1.910
1.0x10% 1.281
4.5%108 12.32
1:4xlog 6.899
3.
?IZ:%SS 2.281
4.5x10% 1.551
1.4xlo§ 1.286
.131
%'8:%85 ?.372
8.8x10° 1.285
1.0x18§ 0.4729
0.3042
2'22i06 2.313
1.4x108 1.630
4.5%10° 0.9167
1.4x10° 0.5390

T

8
8
3
1

5
1
4
0
5
4

55

2

2
2

-
[\

-

NN W=NpDPEPEPN R WP N E=RWK
L]

1
7
5
4
3
2
8
5

(sec.)

.
wn

wn

A
T-T

-0.775
-0.606
-0.708
-0.464
-0.302
-0.375
-0.591
-0.400
+0.012
-0.167
-0.291
-0.217
+0.288
-0.376
-0.768
-0.547
-0.600
-0.363
-0.146
+0.027
-0.138
-0.030
-0.240
+0.551
+0.286
-0.174
-0.695
~0.679
-0.764
-0.696
-0.030
-0.185
-0.542
-0.461
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6.0 LINEAR REGRESSION ANALYSIS OF BROWN'S DATA AND AN EQUAL SAMPLE OF

MILLER'S DATA

The preceding regression analysis used 257 data points from Brown's
data and 1049 data point: from Miller's data. All points were weighted
equally and hence Miller's data influenced the regression function coeffi-
cients more than Brown's data. Figure 14, for example, indicates that
Brown's data may have a somewhat steeper slope than the function obtained
from the 1306 data points used in the analysis. For this reason, the
linear regression program was used to obtain coefficients of a function
based on Brown's data and an equal sample of Miller's dsta. The 257 points
were selected from Miller's data to cover that portion of the sample space
not included in Brown's data., Matrix inversion difficulties necessitated
the use of a function with only six independent variables. The non-linear
equation used in the analysis is made equivalent to Equation (5) by the

following transformation.

Y =1og T s T is recovery time in seconds

Xl = log L , L is recovery target luminance in millilamberts
Xy = (108 L)%,

X3 = A , A is the visual acuity

Xh = A?

X5 = log ET ’ ET is the source energy in troland-seconds

xg = (log ET)2

The source energy is also expressed in lambert-seconds which alters the

last two variables as follows:

%5
%

log EL » Ep, is the source energy in lambert-seconds

2
(1og E)
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The stepwise procedure described in Appendix M was used in the analysis
and results are listed for the two cases considered in Table XI and
Table XII.

The last set of coefficiernts in Table XI gives the following function
which may be used to predict recovery times (T) as a function of recovery
target luminance (L), visual acuity (A) and source energy in troland-
seconds (ET)'

log T = -4,1856800 - .32149662 log L

+ .033677487 (log L)2 + ,67523230 A -.092360297 A2

+1.1595261 log ET - .060274522 (log ET)2 (6a)
The percentage standard deviation associated with this function is 43.47%
and may be compared with the percentage standard deviation of 35.6% found
in the last row of Table V. Since the present analysis gives equal weight
to Miller's data and Brown's data, the larger percentage standard deviation
is not surprising.

The last set of coefficients in Table XII gives the following function
which may be used to predict recovery time (T) as a function of recovery
target luminance (L), visual acuity (A) and source energy in lambert-seconds
(Ey).

log T = .10599667 - ,31755011 log L + .033342218 (log L)2
+.65051730 A - 074533541 A + 55890282 log E,
-.067115622 (log Ep)° (78)
The percentage standard deviation associated with this function is 43.77%

and may be compared with the percentage standard deviation of 36.6% found

in the last row of Table VI,
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The elements of the product matrix formed by multiplying the working
matrix and its inverse (source energy in troland-seconds) are listed in
Table XIII. Since the product matrix is very nearly a unit matrix, the
inversion nrocess was satisfactory. A similar test was made of the other

inversion (source energy jin lambert-seconds). In this case, also, the

product matrix was very nearly a unit matrix; see Table XIV.
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TABLE XIII .
PRODUCT MATRIX A A~ = C

EQAL SAMPLES OF MILLER'S AND

BROWN'S DATA

E,, (TROLAND-SECONDS)

0.2M000N000E+01
“0.18539140E-0/
“(.23865141 =0k
D.745U5RN6F-0R
“0.14343408F=0¢k
“3.27939A771<0H
“0.29976945¢-08
0.99999974r+01
“0.13055%251€=-06
0.1106294RF=0H
~0.12310920Fk<-0b
*0.11490192k=06n
“0.15133902K-0H
“0.35101402E=-0n6
0.99999994E+ N1
0.52270479k-07
=0.472258762E-07
~0.9188N0793F=-0/
0.46%66129E-Nk
0.14784160E=-0¢
“0.8A438376E-07
0.10000011k«n
“0.31776726E-04
0.1210/7193F-07
0.97788R70F -0k
0.53556717E-07
N.15306615k-07
~0.31106174E=-06
0.99999838F+N0
0.4R42H774F -0/
0.65192580e-04
=0.11100201F<06
U.4A566129E-09
Ne75250R64E=-06
0.59604645=-07/
0.99999093F N1
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TABLE XIV _q

PRODUCT MATRIX A A~ = C
EQUAL SAMPLES OF MILLER'S AND
BROWN'S DATA

EL ( LAMBERT-SECONDS )

\\.U\."v‘“n\‘o‘.-v‘\.""‘vv\.\-bg‘-‘-“v\n

3)
4)
5)
6)

0.10000000E+01
0.80472N91E=0A
=0./1013346E-08
~0.1R626451E=07
0.4A566128E-0A
0.14901161F=07
~0.69994712-0&
0.99999974E+00
“0.41423846E-07
-0.30748197E-07
0.15946R99E=07
0.51804R1RE=0H
“0.705767R9E-0R
“0.819NE348E-N6
0.10000000E+01
0.84546627E-0K
0.57020453E=0K
0.75611371c-0R
U.50267984E=08
0.26921N43E-0
“0.11816155c=07
0.99999974E+00
-0.52154N64E=07
0.74505806F=08
-0.37252903E-08
0.11394150E-07
=0.33585R820t=0/
~0.21513551E=-06
0.99999992E+0N
0.139A9R3I9E=07
0.20489N97E=07
“0.65483619E=-08
0.46566129E=-08
0.37252903E=07

0.1N0430R813c-06

0.10000000E+01
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7.0 A NOTE CONCERNING INDIVIDUAL DIFFERENCES - BASED ON THE

LINEAR REGRESSION ANALYSIS OF MILLER'S DATA ALONE

The variables used in this regression analysis are functions
of the recovery time, source intensity, and recovery target luminance.
The non-linear equation used in the analysis is made equivalent to
Equation (5) by the following transformation.

Y =1og T s, T is recovery time in seconds

Xl =1log L , L is recovery target luminance in

millilamberts
X, = (log L)*
X3 = (log L)3
Xu = log ET , E_ 1s the source intensity in troland-
&
seconds
2
XS = (log ET)
3
X = (log Eg)

The earlier form (Version I) of the multiple linear regression pro-
gram used in this analysis of Miller's data did not primt out the
intermediate regression equations. The following regression equation
was obtained when 1049 data points from Miller's experiments were
used in the analysis.
log T = -0.34522704 (log L) + 0.0086932968 (1log L)2

+ 0.010272788 (1log L)3 + 4.,5784872 (log Eq)

- 0.305043kk (log ET)2 + 0.0013180203 (log ET)3

- 16.398782 (6b)
The standard error of the regression equation wasTy = 0.1425 and
the percentage standard deviation in T wasqngg = 33%. The product

matrix 813 is given in Table XV and is very nearly:equal to the unit
56



nmwmmmwmmmmmmmmmmmmwmmmmwmmmmwmwmmmm

OOOOOOW\H\HUIUIU‘&&&&&&UGG(A(AMNNMMMI\)HHM&‘HH

TABIE XV

PRODUCT MATRIX A A

O\lb&l\)“&\lbfd\)HO\ﬁ&:d\)—‘&ﬂ'&(d'\)'—"dl&:d\)-‘:"\ﬂb(d\)'-‘

MILLER'S DATA

N.99999Y992E+00
~0.,48221409E-08
=N.15628757€E-07

0.48428774E-07

0.72875991E=-06
=N.52386895E-09
“N.16414560E-07
0.10000000E+01

N.46566129E-ng

N.18738210E-05

0.68545341E-n6
“N.46566129E-09
-0.78743324E-06
-0.34895493E-07

N.10000000E+01
-0.216513R7E-04

N.53904951E~-05
-N.74505806E-08

N.37252903E-08

N.R73114G1E-09
-N.12223609E-08

N.99999391E+00

N.23115426E-05
-0.58207661E-09

0.11175871E-07
“0.31897798E-07
=0.20489097E-07

N.51534176E-03

0.99999598E+00

0.27939677€-07
0.59604645E-07
-N.81025064E~07
“N.18626451E-06

N.26950836E-02

N.12230873E-03

0.99999969E+09

-1

=S
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matrix., This indicates that the matrix inversion is satisfactory.
The input data show considerable variation from subJject to

subject in recovery time. In an effort to study this variation,

Miller's data were divided into five subsets by subject. The regression
program was used to fit each subset, The percentage standard deviations
for the five subsets of subject data are compared with the percentage
standard deviation for all the data in Table XVI.

| TABLE XVI

PERCENTAGE STANDARD DEVIATION
IN RECOVERY TIME FOR INDIVIDUAL SUBJECTS

by
T
SUBJECT STANDARD DEVIATION

J.N, 26%

J.H. 27%

R.B. 20%

J.S. 25%

V.K. 22%

All of Miller's Data 33%

In several cases, the matrix inversion was not satisfactory. It

should be noted, however that such errors would be expected to in-
crease the percentage standard deviation of the recovery time for
any given subject. The matrix inversion in the case of the total
data was adequate as shown in Table XV. Table XVI shows that the per-
centage standard deviation of experimental data from the regression
function obtained by using all of Miller's data is larger than for

any individual subject.
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8.0 GOMPERTZ FUNCTION

An effort has been made to apply the Gompertz Function (28) to the
flashblindness problem. The general equation for the curve may be
written E

h
T = v.g (8)
The dependent variable T is seen to be a double exponential function
of E. Let the variable T be the recovery time in seconds and E the flash
energy in megatroland-seconds.

The coefficient, v, can be made a function of the target luminance L.
The more complex function then reduces to the Gompertz Function for each
value of target luminance. The coefficient, v, is the limiting value of
T for a particular value of L provided that the constants g and h are both
fractional and positive. The visual aculty is included with other random
variables such as the subject variatiom.

The value of v must be determined graphically or by other means. By
taeking the logerithm of equation (8) twice and substituting T/ for ¥ the
following linear relationship is obtained.

log ( - 1og ') = (log h) E + [1og (-10g gﬂ
It is possible to determine (log h) and [log (-log g)] by linear regression
if log (- log T') is taken as the dependent variable and E as the
independent variesble. In this sample problem, this was not done. An
estimate was made by selecting two representative points and solving
simultaneous linear equations. It was apparent that no single straight line
would be a good fit to the data. For this reason, the constants g and h were

determined for two functions. Equations (9) and {10) are these functions;

the ranges in which they apply are indicated.
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23,2 0.9066"
t = o= (0.2339)
3/ L (9)

when LS E S 3]
0.007586 € L< 281.8
E
2 0.9625 (10)

23.

t = eummem—
v L
vhen 31€ E £ ¢
0.007586SL.£281.8

(0.8183)

i

Miller's data, Appendix Tebles G-1 and G-3 were used to obtain these
functions. Opecificially, the data for subject R. B. were used; the letter
size was 16,27 a visual acuity of 0.3086. Table XVII is & 1list of the
measured and computed wvalues and the deviation of the measured values

from the computed values,

TAELE XVIT

VISUAL RECOVERY TIME - GOMPERTZ FUNC;TION
SUBJECT R. B., LETTER SIZE 16.2

A A .lA?____‘ T'
L (mL) E(mega td-sec.) T (sec.) T (sec.) (T - T)sec. T
281.8 11.22 4,0 2.17 -1.83 0.457
" 15.85 4,5 2.59 -1.91 0.424
" 22.39 5.5 3.00 -2.50 0.45k4
" 31.62 5.0 3.33 -1.67 0.334
" 31.62 4.0 3.33 -0.67 0.167
" k4,67 k.s 3.41 -1.09 0.242
" 63.10 5.0 3.48 -1.52 0. 30k
" 89.12 5.0 3.52 -1.48 0.296
5.623 3.981 5.0 4,82 -0.,18 0.03%
" 5.623 4.0 5.59 1.59 0.397
" T.943 7.0 6.64 -0.36 0.051
" 11.22 10.0 8.00 -2,00 0.200
" 15.85 10.0 9.56 -0. 44 0.0k
" 22,39 12.0 11.08 -0.92 0.076
" 31.62 11.5 12,29 +0.79 0.068
" 11.22 9.0 8.00 -1.00 0.111
" 15.85 8.0 9.56 +1.56 0.195
" 22.39 10.0 11.08 +1,08 0.108
" 31.62 10.0 12.29 +2.29 0.229
' " bh.e, 11.0 12.58 +1,58 0.143
" 63.10 10.5 12,82 +2.32 0.220
" 89.12 11.0 12,96 +1.96 0.178
60
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3.981
5.623
T.943
11.22
15.85
22.39
31.62
11.22
15.85
22.39
31.62
L4 67
63.10
89.12
3.981
5.623
7.943
11.22
15.85
22,39
31.62
11.22
15.85

31. 62
L4, 67
63.10
89.12
3.981
5.623

11.22
15.85
22.37
31.62
11.22
15.85
22, 39
31.62
LL.67
63.10
89.12
3.981
5.623
T.943
11.22
15.85
22.37
31.62
11.22

TABLE XVII Con't.

n N
[ ] L ] - - - ) o .m. L ] L ] - [ ] -p'
VMOOVOOOOUMOOOONOMIUNIOOMOUVIOMIUVIO OO OO OVIOVIOWO OVMOVMSOWLO O o

A
Py
(oNoNe]

6.81

7.89

9.38
11.29
13.50
15.64
17.36
11.29
13.50
15.64
17.36
1T7.77
18.10
18.31
11.38
13.20
15.69
18.89
22.58
26.16
29.03
18.89
22,58
26.16
29.03
29.72
30.27
30.61
15.24
17.67
21.00
25,28
30.23

35.02
38.86
25,28
30.23
35.02
38.86
39.79
Lo.52
40.99
21.53
ok, 96
29,66
35.7T1
L2.70
Lo 47
54,89
35.7T1

-0.19 0.027
-0.11 0.013
-1.62 0. 147
-2.21 0.163
+0.50 0.038
-0.36 0.022
+1.86 0.120
-3.71 0.247
+2.00 0.173
+1.64 0.117
+2.36 0.157
+2.27 0.146
+1.10 0.064
+3.81 0.262
+0.38 0.03k4
+0. 70 0.056
+0.69 0.046
-3.11 0.141
+1.58 0.075
+2.16 0.090
+4,03 0.161
-1.11 0.055
+4,08 0.220
+1.66 0.067
+1.03 0.036
+3.22 0.121
+4,27 0.164
+7.11 0.302
+1.24 0.088
+0.67 0,039
-1.50 0.066
-1.22 0.046
+2.23 0.079
+6.52 0.228
+9.86 0. 340
-6.72 0.210
-2.77 0.083
-5.98 0.145
+1.3% 0.036
4,21 0.095
+2.52 0,066
+2.99 0.078
+4.53 0.266
+4,91 0.239
+1.66 0.059
+0. 71 0.020
+0.20 0.004
+6. 47 0.150
-0.11 0.002
-6.29 0.149
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TABLE XVII Con't,

0.96310 15.85 44,00 La2,70 -1.30 0.029
) 22.39 56.5 Lo, 47 -7.03 0.124

) 31.62 65.0 54,89 -10.11 0.155

" Ly, 67 55.5 56. 20 + 0.70 0.012

) 63.10 58.0 57.24 -0.76 0.013
89.12 64,5 57.89 -6.61 0.102

0.91122 3.981 23.0 38.28 +15. 28 0.664
' 5.623 31.0 L4, 38 +13.38 0.431

" " T.943 31.5 52.7h +21, 24 0.67k
? 11.22 47,0 63.50 +16,50 0.351

J 15.85 63.0 75.92 +12,92 0.20%

) 22.37 72.0 87.96 +15,96 0.221
31.62 T6.0 97.60 +21.60 0.284

" 11.22 60.0 63.50 +3.50 0.058

: 15.85 70.0 75.92 +5,92 0.084

' 22,39 90,0 87.96 -2.0k 0.022

" 31.62 111.0 9T7.60 -13.40 0.120

" 44,67 88.0 99,92 +11.92 0.135

? 63.10 94.0 101.78 +7.78 0.082

' 89.12 103.0 102.94 -0.06 0.000
0.007586 3.981 k6.0 43.62 -2.38 0.051
x 5.623 4o.0 50.57 +10.57 0.264
7.943 46,5 60.09 +13.59 0.292

" 11.22 58.0 72.35 +1k, 35 0.247

" 15.85 89.0 86.50 -2.50 0.028

" 22. 37 98.0 100,23 +2,23 0.022

" 31.62 110.0 111.21 +1.21 0.011

" 11.22 87.0 72.35 -14.65 0.168

" 15.85 79.0 86.50 +7.50 0.094

" 22. 39 125.0 100.23 24, TT 0.198

" 31.62 120.0 111.21 -3.79 0.073

" L4, 67 10%.0 113.85 +9, 85 0.094

" 63.10 107.0 115.97 +8.97 0.083

" 89.12 135.0 117.29 -17.71 0.131

Figure 16 is a graph of some of the data in Table XVII.

I£AT = T - T, then the standard deviation inAT is Tpp = 7.06
seconds for the data in Table XVII. The ratiol@—,i-—Tl was used to obtain
the percentage standard deviation @ % = 0.199 = 20%.

It will be recalled that R. B.'s data (all 212 points rather
than the 106 used here) were also fitted with the power series function.
In Teble XVI, it may be seen that the percentage standard deviation in
recovery time with the power series fit for subject R.B. wasﬂ'%‘m = 0,195~

20% even though the matrix inversion was not perfect. It would seem,
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then, tlat the power series function gives a fit to the data as wu.  or
better than the Gompertz Function. Based on the results of tr ~TLe
problem and sample problems which used the power series functiu., .
considering also the relative flexibility of the power series function,
further consideration of the Gompertz Functlon was not warranted, at least

for the time beihg.




9.0 PREDICTION FROM RECOGNITION THRESHOLD AND AFTERIMAGE BRIGHTNESS

MATCHING DATA

Miller is presently engaged in some preliminary studies which attempt
to predict recovery time from recognition threshold and afterimage brightness

* The procedure used 1s essentially as follows:

matching data.
a. A flash is delivered to the eye so as to create a semi-circular
afterimage. The other half of the semi-circle is then illuminated and
its intensity is menipulated so as to match the brightness of the afterimage
as it deceys in time, *¥*
b. A Snellen letter of some brightness is superimposed on a bright
field and the field luminance menipulated until the letter can Just be
seen; i.e., the background field lumlnance for threshold recognition of the
letter is determined.
¢. For each combination of flash energy, letter size and letter
brightness, the recovery time is measured.
d., The appropriate recognition threshold and afterimage decay curves
are combined graphically to determine the time after a flash that an after-

image becomes dim enough Just to see a letter of a given size and brightness.

This time is the recovery time prediction for the selected conditionms.

* Mrs, Miller described these studies to Dr. Czeh during the latter's recent
visit to the School of Optometry, Ohio State University. ©She was also
kind enough to provide data from her first studies to us.

** Some difficulty is eucountered in keeping this afterimage and matching
field in proper Juxtaposition. Better results are obtalned when the
afterimage is a circular spot and the matching field is an annulus
around it. See Fry (17) for a description of this latter arrangement.
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Miller's preliminary data include some 111 pairs of measured and
predicted recovery times. The correlation between the measured and
predicted values 1s on the order of .82. On the average, the predicted
values underestimate the measured values by about 1 per cent, and the
standard deviation of the distribution of the per cent errors is approxi-
mately 44, It 1s to be emphasized that this analysis has been applied to
a very preliminary set of data from what should more properly be termed a
pilot or feasibility study. With improvement in the experimental proce-
dures and an analytical rather than graphic combination of the threshold

and brightness matching data, prediction must almost certainly improve.
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10.0 PREDICTION USING BROWN'S EQUATION

Brown (8) recently suggested an equation for predicting recovery time
as a function of flash energy, visual acuity and display luminance. This
equation was applied to Miller's data, Appendix G, to compare its predictions
with the predictions of the multiple linear regression equation. The results
of this effort are presented here.

Brown's equation is:

* (Log L ~ Log Lo) (2.7 - Log L) (11)
where:
t = perception (recovery) time in sec.,
.2 = t_, minimum perception time in sec.,
L = dgsplay luminance in ft.-lamberts
L0 = minimum luminance in ft.-lemberts at which the
display cean be perceived under optimum conditions
(Log L, = -1.2 for acuity = .33)
2.7 = Log L max, the log of the luminance in ft.-lamberts
at which to is reacheqd,
and,
b = g Ah
where:

A = Flash energy in ft.-lambert-sec.
and
g and h = functions of visual acuity.
Brown determined values for g and h empirically from his data. For
a visual acuity of .33 and a flash duration of 9.8 msec.,
b . oora
033 (12)
None of Miller's experimental conditions matches this visual acuity -

flash duration combination exactly. One of her sets of conditions
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(flash duration of S msec,, visual acuity of 0.3086) was fairly close,

however and Equation (12) for b was used to approximate by 30gg for

0.33
the various flash energies, converted to ft,-L-sec., used by Miller.

Recovery times computed using these values of b differed markedly from the
times measured by Miller; these results are shown in Table XVIII. The

errors are so large that there seemed no need to calculate the per cent

error.
TABLE XVIII
COMPARISON OF RECOVERY TIMES PREDICTED
(FROM Eq. 11) and MEASURED (FROM MILLER)
Log L Log A t (calculated) t {observed)
(ft-L) (ft-L-sec.) (sec) (sec.)

2.418 5.718 7.7 5.3
5.568 5.9 h.7
5,418 L.5 5.1
5.268 3.6 3.9
.T18 5,718 99.66 13.3
5,568 75.63 12.8
5.418 57.23 10.5
5,268 43.60 9.9
5.118 33.13 8.0
4,968 25.2 5.8
4,818 19.2 6.6
. 268 5.718 159.60 20.2
5.568 121.13 18.2
5.418 91.95 15.2
5.268 69.78 14.0
5,118 53.00 12.1
4,968 Lo, 25 9.4
4,818 30.57 10. 4
-. 4019 5.718 374.3 37.4
5.568 283.9 31.1
5.418 215.5 %.6
5,268 163.4 21.8
5.118 124.1 19.0
4,968 94,2 14.2
4,818 70.5 13.0
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-. 7819 5,718 801.8 49,7
5.568 608.1 40.5
5,418 460. 4 39.5
5,268 349.9 33.0
5,118 265.6 2.5
4,968 200.6 18.8
4,818 152.9 1T k4

Brown's equatica was also used to compare computed recovery times with
times taken from Appendix Table D.2.* Only part of the data were used;
specifically, the four lLighest points for the 9.8 msec. flash at the
three levels of tzrget luminance. The percentage standard deviation was

T% 72 78, The multiple linear regression equation for flash energy in lambert-
seconds (Equation T), applied to the same points, ylelds a percentage stan-

dard deviationd% % 60,**

It is quite clear from this analysis that Brown's function is not
easily applicable to some arbitrarily chosen set of data such as Miller's.
The main difficulty apparently lies in the resolution of the coefficient b;
this is so critical that the assumption b.33= b.3086 is not a valid one.
Thus, an error so large was introduced in the prediction of Miller's
recovery times that & mathematical treatment of error was beside the point,
This error is not entirely attributable to the selention of b 33, however,
for the values used for Lo and Lmax may also be in error., Still, it appears
that, in general, Brown's equation may yield errors as large or larger than

those resulting from the application of the m.l.r. function to the same data.

In addition, the m.l.r. function is a great deal easier to apply.

* Appendix Teble D.2 is from Hill and Chisum (23) and Chisum and Hill (11).
Brown's (8) Figure 4 is the corresponding graph, and is replotted in
Figure 5 above,

#% See also Table X preceding.
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11.0 DISCUSSION

The model presented here is a purely mathematical model developed only
for the purpose of predicting recovery time. The equations integrate data
from several sources, but do not, and were not intended to, integrate
knowledge of the chemical and neural aspects of visual recovery. The main
conslderation was to find equations which meet the mathematical criterion of
minimizing the sum of the squared deviations of the predicted values from
the observed values. The equations are' of practical value in that they can
predict recovery times given the flash energy, target brightness and target
visual acuity (within certain bounds) with an accuracy somewhat higher than
can be achieved by other presently available techniques. Still, from the
point of view of advancing the fundamental knowledge of flashblindness, and
of recovery from it, the equations leave much to be desired because of their
complete isolation from the physiological mechanisms involved.

The applicability of the equations to the pilot's visual tasks cannot
be stated definitely. Indeed, of the various studies surveyed, only
Whiteside end Bazarnik (54) used en aircraft instrument as the recovery
target. However, since the model does cover visual acuities ranging from
0.08 to 0.33 (visual angles of critical detall between 12.5and 37), and
since the critical detail of most dimly jilluminated instrument markings do
subtend visual angles greater than 3’ (see Appendix A), there is almost cer-
tainly some applicability. Errors in prediction will, of course, be larger,
and not only because of considerations involving statistical logic, but also
because the pilot's visual tasks certainly involve more than merely the

recognition of single letters or numerals or the detection of the
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orientation of a line, Studies using aircraft irstruments (or photos or
mockups of them) would be valuable. One should probebly begin with the
instruments needed for the most critical post-flash tasks. It is likely
that the tasks will vary with the nature and phase of the mission, but
surely attitude indicators will be high on the list.

Whiteside and Bazarnik (54) used flash energies that are, for the most
part, well above the upper bound that had to be set (and, indeed, no other
study used flash energies as high as their highest). This is really
unfortunate since the equations as they now stand are sbsolutely incapsable
of predicting the positive acceleration in recovery time which apparently
starts beyond approximately 1600 lambert-seconds (8.0 log troland-seconds).

However, assuming some average visual acuity, their flash energies
which do fall below the multiple linear regression function's upper limit
yield recovery times consistent with expectations. Brown (8) suggests that
the Lleveling off of recovery time at about 1600 lambert-seconds results from a
meximum possible bleaching of the photochemical substances and that the
positive acceleration at higher energies results from actual, but reversible,
damage; ultimately, of course, the damage becomes irreversible and the
recovery time infinite for the portion of the retina affected. It would be
interesting to try to relate the various positive and negative accelerations
to what is known about the photochemical and heat sbsorption and diffusion
processes in the retina.

The results of the brief examination of Brown's (8) equation led to
rather disappointing results. The main difficulty is in determining velues
for the variable b = g AR (where g and h are functions of visual acuity, and

A is the flash energy). Brown determined g and h empirically. Presumably,
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with a good number of additional data points for a number of different visual
aculties, one could write a function to determine g and h for any visual acuity.

But at present, one must cut and try, and small varistions in g and h can cause

large variations in t- predicted.

The technique used to convert lambert-seconds to troland-seconds
by estimating pupll size and pupil size changes during a flash is mathe-
metically straight-forward and espparently reasonably accurate. The accuracy
will be improved by Miller's newer data concerning the pupil response. The
technique should be a help in allowing the use of trolands (or troland-
seconds) as the standard unit of measurement for flash intensity (or energy).
Some modification of the technique is, however, clearly required to take
account of the puplil response latency and, perhaps, of a greater Stiles-
Crawford effect when the pupril opening is large as compared to the effect
vhen the pupil is small.

One variable, in particular, which it has been impossible to treat
directly, is the level of dark (or light) adaptation achieved prior to the
flash; there just are not enough relevant detae. The variable does, of course,
enter the troland-second equation indirectly since a source of a given
intensity and duration will deliver a higher energy (in troland-seconds)
to the retina of the dark adapted eye than to the retina of the light
adapted eye. One study that varied pupil size directly (Severin et al, 42)
gave such unique results that a replication is essential. Another study
(Miller, 32) that directly varied the level of pre-flash adaptation used only
cne target luminance after the flash and is, therefore, quite limited in the

generalizations it allows.
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There are a number of other variables which have not been treated
here but which may be of importance, The spectral characteristics of the
flash and of the display i1llumination almost certainly have to be taken
into account. The display illumination technique (i.e., front-illumination
vs, transillumination) may affect recovery time, as may also figure-ground

relations and contrast.
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12,0 SUMMARY

Equations have been developed for predicting recovery time from
flashblindness, The equations are limited to the variables flash energy,
display visual ascuity, and display luminance, and to certain ranges of
those variables. Within these limits, however, prediction appears possible.
There are, of course, errors in prediction, but these appear to be related

primarily to subhject differences.
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Appendix A
A DESCRIPTION OF SELECTED FEATURES OF THE AIRCREW VISUAL ENVIRONMENT™

Introduction

The visual environment of the pilot 1is never static, It 1s constantly
changing, not only in e qualitative but also a quantitative manner. Because
of this constant change it is not possible to adequately describe the totul
visual environment at any given time, or even one aspect of the total
environment over a significant period of time., Even if such a description
were possible, it would have only limited applicability in establiching the
wlde range of visual parameters related to the aviation enviromnment. Thoe
pervasiveness of this corstant variability can readily be appreciated when,
for example, it 1s realized that the daylight ambient illumination in lhe
cockpit of an aircraft 1s determined by the cockpit, windshield, and canopy
design characteristics of the particular aircraft, the altitude and direction
of the flight, the time of day, and the prevailing meteorological conditions.

To avoid the inherent complexity of accounting for all the multiple
significent interactions that would normally have to be considered in
attempting a compreheusive description of the visual environment, the data
here to be presented have been derived, not from specific operational environ-
ments, but rather from design criteria imposed by applicable standards and
specifications together with such supporting information that is considered to
be good human factors practices. Some additional information has also been
supplied that has been derived from actual physical measurements of broadly
applicable and generalizable situations.

A perusal of the supplied data makes it immediately evident that little

or no direct account has been taken of the pilot's physiological or

*
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psychophysical abilities and limitations. The data are oriented toward a
general description of selected quantitative and qualitative potential

stimuli available to the pilot regardless of his immediate ability to
effectively utilize them. The extent to which these selected parameters

become useful and/or avallable to the pilot under varying levels of adapta-
tion to his enviromment must be related to the effect the varieble under consid-
eration, in this case high intensity light flashes, has on the pilot's visual
capabilities,

Ia the Cockpit

The visual envirommcat within the cockpit is subject to considerably
more control then the external enviromnment. Though the external environment
does influence visability in the cockpit, the careful design of instruments
and indicators and provisions for artificial illumination go a long way toward
minimizing excessive variability and maintaining adequate visibility for the
tasks to be performed,

Table A-I presents a compilation of visual angles subtended by the
various dimensions of each characteristic on the control configurations and
markings employed on instruments, display peanels, and plastic lighting plates
at selected viewing distances. Table A-II presents a similar compilation for
recommended scale indexes designed for dimly lighted aircraft dials. The
visual angle of a target or test object is ornly one parameter in determining
visibility and legibility.

Consideration must also be given to brightness or intensity and the
contrast ratio between the figure and ground. Table A-III gives the required
ranges of brightness and contrast ratios for integrally lighted instruments

and Table A-IV gives comparable figures for plastic lighting plates.
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Integrally lighted displays frequently require secondary floodlighting. A
relatively low level is employed to orient the visual field and minimize
the autokinetic effect that often occurs where visual orientation reference
cues are minimal. A higher level of floodlighting serves to supply adequate
illumination levels to read the control configurations and markings in the
event of failure of the integral lighting system. The particular illumination
levels employed are generally a function of the specific requirements im-
posed by other design requirements but are generally limited in their upper
range by the consideration of the necessity for maintaining adequate dark
adaptation. Table A-V gives ranges of light intensities required for
various work stations and functions to be supplied by the secondary light-
ing system. The maximum intensity permitted at a work station requiring
dark adaptation maintenance is 6.0 ft. C. It is generally accepted that for
dial reading purposes and similar activities the markings must have a sub-
Jective brightness of at least 0.02 ft. L. with adequate contrast between
markings and ground. Some aircraft are equipped with an emergency floodlight-~
ing source generally referred to as thunderstorm lights. Where such lights are
available they must have a minimum intensity of 100 ft. C, to be distributed
over the floor and instruments of the flight compartment. This is essentially
an emergency device since it is likely to seridusly impeir dark adaptation
under the conditions they are most likely to be utilized.

Since most detail design of instruments and other information displays
are oriented toward detectability, legibility, and readability at low levels
of ambient and integral lighting, the presence of high daytime ambient

illumination in the flight station is seldom a problem as it relates to these
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TABLE A-IV

PLASTIC LIGHTING PLATES

TYPE!l &II

( Light Conducting Panels)

Intensity of unobstructed markings - Not less than .75 ft. L
Intensity of obstructed markings - Not less than .50 ft. L
Contrast - Not less than 12

TYPE 111

( Duo Panels)

Intensity on a 2.188" radius from lamﬁ - 2.6

ft. L
Intensity with two nearest lamps extinguished - 2.0 ft. L
Contrast - Not less than 12
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TABLE A-v

LEVELS OF ILLUMINATION FOR SECONDARY LIGHTING

Light Intensity in
Foot Candles
Dimming
Location Minimum Maximum Required

Cabin area pasasenger* 0.5 2.0 Yes
Cargo compartments* 0.1 0.7 No
Compartmnents containing

unlighted equipment

that requires adjustment* 0.5 2.0 Yes
Crew station locations

where map reading, course

plotting, et cetera, are

required (on working area)* 3.5 6.0 Yes
Walkways ~ aisles* 0.1 0.7 No
Auxiliary power plant com-

partments and engines

where light is required 4.0 8.0 No
Cabin area (passenger) 4.0 15.0 Yes
Cargo compartments on floor 0.2 2.0 No
Crew station locations where

map reading, course plotting,

et cetera, are required -1 8.0 15.0 Yes
Electronic equipment controls

that are not lighted and

require adjustment 0.5 5.0 Yes
Compartments requiring inspec-

tion 0.5 2.0 Yes
Loading and ramp areas (on the

loading area) 0.2 2.0 No
Passageways on floor 0.2 2.0 No
Tie down locations on floor

with cargo in place 0.2 2.0 No

*Areas where dark adaptation must be maintained

Notes:
Light intensities apply to all colors of light.

A-8




RN - PN — S — ‘ -

capabllities. Some modification of the effects of excessive ambient illumina-
tion levels can be achieved in special situations, such as CRT viewing,
through the use of visors, glare shields, hoods, and similar devices,

Quite distinct from the necessity to discriminate relatively small
and often complex stimuli such as instrument markings and operational legends
is the utilization of aircrew station signal lights. Table A-VI 1lists the
basic brightness ranges and color requirements, as well as some additional
factors that enter into determining their effectiveness for the purpose
they are intended to serve., These signals are used as warning, caution, and
advisory indicators that require varying degrees of attention ard priorities
by the pilot.

The visual charscteristics of controls are not easily defined by
visual characteristics alone. Certain elements of appearance are part of the
total integrated process related to the utilization of controls but location

and shape coding tends to minimize the dependence on visual cues.

The External Environment

Though the particular flight conditions existing at a given time, and
the specific activity to be performed during a segment of the flight profile
may vary the ratio somewhat, the pilot spends the greatest part of his time
observing the external enviromment. Such activity may be directed toward
terrain following, checking for reference points, take-off and landing,
obstacle avoidance, and formation flying. Though other factors may play a
significant role, it can be said that most of this effort is directed at
collision avoidance which in itself is inherent in many of the mentioned

activities. The data presented in this section are generally oriented toward

this approach with particular attention to air-to-air visibility.
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One feature of modern aviation that imposes certain demands on the
visual capabilities of the aviator, without being a functional aspect of
vision, is the potential and actual high speeds of operational aircraft.
The great distances that can be covered In & matter of seconds intensifies
the demands for obstacle or target detection at ever great distances. 1In
many instances such requirements have already exceeded the limits of the
psycho-physiclogical limits of the human element in modern aviation.

Table A-VII, for example, illustrates some representative distances
traveled not only during the relatively short period of time necessary to
react to a complex stimulus under the most idesl conditions but also at
other intervals during which the pilot may be occupied with other tasks or
have his vision temporarily impaired by loss of dark adaptation or the
veiling influence of short, high intensity light flashes.

The data in Table A-VII can be compared to the representative data in
Table A-VIII which illustrate the visual angle subtended by targets, such
as other aircraft, presenting effective major dimensions at right angles to
the line of sight at viewing distances comparable to the distances traveled
as given in Table A-VII. In these conditions there are other factors to
consider which play an important role in the probability of detection at a
given distance under varying conditions. Sky brightness becomes a dominant
factor and that in itself is a highly variable condition. It has been
suggested that a value of 2950 ft. L. is representative of the brightness of
sunlit sand, water, and sky and a value of 17.5 ft. L. 1s a reasonable approxi-
mation of embient brightness during civil twilight (La Mar, E.S., et al.,

J. Opt. Soc, Amer., 37, 1947). These values are of limited
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VISUAL ANGLES SUBTENDED BY TARGETS

TARLE A-VIIT

OF SELECTED EFFECTIVE MAJOR DIMENSIONS
AT REPRESENTATIVE DISTANCES

Target Dimension

* 5,000
10, 000
15, 000
20,000
30, GO0
40, 000
50, 000
75, 000
100, 000
15¢, 000
200, 000
300, 000

Over/
300,000

27' 30"
13' 457
g' 10"
6' 53"
4' 35"
3' 26"
27 45"
1' 50"
1 23"

* -

41' 15"
20' 38"
13' 45"
10 19"
§' 53"
5' 09"
4' 08"
27 45"
2t 04"
1' 23"
1' 02"

55' 00"
27' 30"
18' 20"
13' 45"
g' 10"
6' 53"
5' 30"
3'40"
2' 45"
i' 50"
1' 23"

1° 08' 45"

24' 23"
22' 55"
17' 11"
11' 28"
8' 36"
6' 53"
4 35"
3' 26"
2' 18"
1' 43"

1' 08"

s e
- —re—

* Values of les: than
1! of vigual ar isle
not included 8 ::ce

they are probs )ly
meaningless in oper
ational situation
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applicability since they apply primarily to viewlng at ground level and
possibly very low altitudes, The apparent brightness of the daylight sky
decreases with altitude, Direct measurements of zenith brightness at 10,000
feet on 11 separate "clear" days within 200 miles of Washington, D.C.,
yielded values ranging from 87 to 153 candles per square foot (Tousey, R.

and Hulbert, 0., J. Opt. Soc. Amer., 37, 1947). With the increase in

altitude and darkening sky, the sun may become 30 per cent brighter than
vhen viewed at ground level. These conditious, with the predominance of
the illumination now coming from below the aircraft, and the increased
sun-sky brightness ratio, lncreases visual dlscomfort and increases the
difficulty of detecting a target against the sky.

Aluminum eircraft reflectivity varies from very low to as high as 80
per cent. The general contrast with the baeckground sky is very low and may
be either positive or negative. Under these conditions the probability of
visual detection generally depends upon "glinting" when reflectivity is high
or when it passes from one value of contrast through zero to a reversed
contrast with the background sky.

Other factors that would normally increase the liklihood cf detection
may not operate effectively against the relatively unvarying background of
the sky. BRelative motion, for example, may not be readily epparent. In-
creased speed may lncrease noticeability rather than detectability due to the
lesser time available for detection. The relatively unvarying background mey
also induce "empty field myopia" in the observer reducing detection range by

as much as 50 per cent.

A-14
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Nighttime flying introduces its own visual demands. Extremely low
ambients and effective zero contrast ratios of the targets to the sky
background reduces target visibility to nil. To overcome this problem numer-
ous systems of signal lights have been devised for various functions such as
formation flying, anti-collision, and aircraft orientation. Tables A-IX,
A-X, A-XT, and A-XII give basic information for intensity, position, and
color for such lights. Table A-XIII gives candle power requirements for
signal lights of various colors to be detected at 5000 yards for comparative
purposes. Though these values are based on observation at or near ground
level the values for the clear atmospheric conditions should probably repre-
sent meximum requirements for altitudes above 10,000 feet if the alrcraft
is flying "above the weather",

A number of detectability and visibility studies has been conducted,
but most of these are not translatable into quantitative unit wvalues of
visual parameters, The results of one such study are summarized in
Table A-XIV. No supporting data relating to the conditions in effect at the
time of the study are available, Along the same line of investigation it has
been calculated that for two planes closing at 1000 knots there is only a
64 per cent probability that one pilot will detect the presence of the other
plane at a distance greater than one nautical mile and that the probability
drops to 26 per cent for distances beyond two nautical miles,

Such figures are tempered by a great number of factors in addition to
those considered under the variables discussed elsewhere. One factor that
veighs heavily in the aviation situation is that due to design restrictioms the
proportion of the available visual field devoted to scanning of the external
enviromment is relatively small. Restricting the visual field to that
attainable by head and eye movements only, one can scan approximately 75 per

cent of the sphere surrounding the head. A survey study of a number of transport
A-15




TABLE A-IX

ANTICOLLISION LIGHTS
LIGHT INTENSITIES (WITH RED COLOR FILTER)

Angle Above or Below Minimum Effective Minimum Effective
Mounting Plane of Candlepower - Red Candlepower - Red
Light in Degrees Light Design Goals Light Required

Otob 100 100
5to10 100 60
10 to 20 60 20
20 to 30 60 10
30 to 40 60
40 to 50 20
Notes
Color:
Aviation Red
Flash Rate

80-100 Per Min.

Number:
One Or More

A-16
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TABLE A-X

DISTRIBUTION OF FUSELAGE LIGHTS

Light Distribution Minimum Intensity Note:
In hemisphere above horizontal 25 candles l;:;:::‘:m
plane White
In hemisphere below horizontal 25 candles
plane
A-17
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TABLE A-XI

WING POSITION LIGHTS

Candlepower distribution in any plane containing the light center
and parallel to the normal line of flight

Angle from 0° (forward) Direction

(Minimum cp1 Minimum cp1 Ma.xifmm
Inboard Outboard design goals required cp
180° to 30° 3
30° to 10° 10
2
0°to 10° 60 40
10°to 20° 50 40
20°to 30° 30 30
30° to 40° 20 20
40° to 50° 15 15
50° to 70° 15 10
70° to 80° 15 6
80° to 100° 10 6
1

2

Red for left light assembly, green for right assembly.

No light specified from 0° to 10° inboard to permit light

to be reduced from minimum values specified at 0° to maximum values

specified at 10° inboard.

A-18




TABLE A-XII

TAIL POSITION LIGHT

Candlepower distribution in any plane containing the light
center and parallel to the normal line-of-flight

Angle on each side of 0° {(astern ) direction| Minimum | Maximum
CP CP
white

0° to 20° 30

20° to 50° 21

50° to 80° 12

1

100° to 120° 3
120° to 135° 2

1

No light specified 80° to 100° to permit light to be reduced

from minimum values specified at 80° to maximum value at 100°.

TABLE

.
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TABLE A-XIII

CANDLE POWER REQUIREMENTS FOR DETECTION
OF LIGHT AT 5, 000 YARDS
Color of Light

Atmospheric Conditior Red Amber White Green
NIGHT

Clear 1.0 2.0 2.5 2.8

Light Rain 1.2 2.1 3.0 3.2

Overcast Haze 3.2 4.1 3.1 5.9

Heavy Rain 8.9 33.5 132.0 33.5

Light Snow 222.0 835.0 1556.0 567.0
DAY .

Overcast and Haze { 2000.0 2111.0 3222.0 4000.0

Clear 4778.0 7656.0 1,]11.0 10, 000.9

Approximations of other ranges and values can be calculated by inverse square law.

- A-20
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aircraft showed that only between 14 and 21 per cent of this available field
of vision could be devoted%to viewing outside the alrcraft.

The increasing structurag. demands put on windshields and canopies by the
requirements of modern, high-speed aircraft import further limitations on visi-
bility from the cockpit. Table A-XV gives experimental data for the loss of
visua.i range in the detection of targets as a function of the angle of incli-
nation of the wiﬁdshieid. Table A-XVI is comparable to Table A-XV except that
it is baéed on the measured light transmission as a function of angle of inci-
dence of the light.

. Table A-XViI glves the standards for transmission and haze in windshields.

Considering Tables A-XV, A-XVI, and A-XVII together, some estimation can be

- made of the degree the target stimulus may become modified before it becomes

available to the pilot.

Those design characteristics that have been presented in the discussioﬁ
of limited fields of vision also tend to reduce the brightness of disabling
flashes of light in the same rétio as they impeair visibility though it remains
to be determined if the degree of functional impsirment is comparably reduced.
Other Considerstions

There are some viéual phenomene that are extremely important in aviation
that defy adequate description in quantitative sensofy terms. The landing of
an aircraft for example, though relying almost exclusively on visual cues, be-
comes a cognitive -or intellectua.l process far removed from simple intensity and
contrast d:lscrimination end visual acuity. Even the depth perception mechanism
operating in such a situation is 111 understood and cannot be defined in simple
functional terms. It seems unlikely that a pilot would choose to land an aircraft
while his vision is only temporarily impaired for a relatively short period.
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TABLE A-XV

LOSS OF VISUAL RANGE AS A FUNCTION
OF ANGLE OF INCLINATION OF WINDSHIELD

b

Angle of Inclination Loss of Visual Range in Percent
From Sightline Plate Glass Plastic

Clean Dirty |

o° 2.4 2.8 7.3

45° 6.7 9.3 16.8

70° 11.0 24.1 | 39.3

80° 15.6 37.8 | 48.2
A-23
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TABLE A-XVI

LIGHT TRANSMISSION AND REFLECTED LIGHT
FACTOR AS A FUNCTION OF ANGLE OF INCIDENCE

Angle of Incidence Light Transmission Reflected Light

(Degreea) Factor Factor
0 1.000 1.00

10 .999 1.00
20 . 997 1.00
30 .390 1.01
40 .980 1,07
50 .954 1.33
60 .890 2.00
70 . 700 3.53
80 .450 7.10

(Figures based on two pieces of . 125" glass laminated with . 08" vinyl plastic)
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Conclusion

In describing the visual enviromment of the members of the aircrew,
attention has been restricte¢ to that immediately identifiable infcrmation
that would serve primarily to assure their immediate survival should their
vision be temporarily impaired by a brief high intensity flash of light.

This orientation ha:. focused on collision avoidance, formation flying, and
the maintenance of a relatively stable flight pattern. No specific attention
has been glven to the visual demands that might be made upon the aircrew in
the performence of specific tactical or other operational activities that
might be required or desirable to fulfill s particular mission segment due

to the lack of specific quantifiable information that is broadly applicable

to all possible situations.
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Appendix B - Brown QIQ

Brown's Table 2 was transformed into the following

table (Table B.l) from which Figure 10 was plotted.

o - —— ——
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Appendix ¢ - Brown (5)

Brown's Table I for subject JB and Table I for AM
were transformed into the following table, Table C.1l1.

Figure 8 was plotted from Table C.l.
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Appendix D - Chisum and Hi.l (11,23)

Chisum and Hill's Figures 4 and 5 were transformed to
the following two tesbles, Table D.1l and D.2. Figures

4 end 5 were plotted from these two tables.
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Iaple D.2

Derived from Figure 5 of Chisum and Hill (11,23). Time Required to Perceive an Acuity Targe
as a Function of the Total Energy of the Adapting Flash, log (td.sec). Display Luminance,
Adapting Flash Duration and Visual Acuity Level were Constant Iaring Each Experimental
Session, and the Adapting Flash Luminance was Varied. Each Datum Point is the Median of
Three Response Measures. Subject JHH. Display Acuity 0.33.

Adapting Recovery Adapting Flash
Flash Display Time Luminance
Duration Luminance log log log
sec mL sec sec mL-sec mL-sec td.sec td.sec

85 1.93 | 4.6 4.0x10§ 3.2x10§ 6.5
81 1,91 | 5.1 1.3x10,  1.0x10, 7.0
" 34 1.53 | 4.05 1.1x10,  8.8x10; 5.9
9,8x10 0.178 10 1.00 | 3.5  3.2x10;  2.5x10, 5.4
5 0.70 | 3.05 1.1x10,  8.8x10, 4.9
4 0.60 | 2.5  3.2x10;  2.5x10, 4.4
] 0.00 | 2.05 1.1x10;  8.8x10, 3.9
1 0.00 | 1.05 1.1x10 8.8x10 2.9
55 1.74 | 4.7s 5.6x10: 4.5x102 6.6
21 1.32 | 4.25 1.8x10,  1.4x10, 6.2
3 7 0.85 | 3.75 5.6x10;  4.5x10, 5.6
0.165x10 0.178 5 0.70 | 3.25 1.8x10,  1.4x10, 5.2
4 0.60 | 2.75 5.6x10;  4.5x10, 4.6
3 0.48 | 2.25 1.8x10]  1.4x10, 4.2
2 0.30 | 1.75 5.6x10 4.5x10 3.6
28 1.45 | 5.1 1.3x102 1.0x102 7.0
3 25 1.40 | 4.5 1.3x10,  1.0x10, 6.0
9.8x10 1.0 12 1.08 | 4.05 1.1x10,  8.8x10, 5.9
5 0.70 | 3.5  1.3x10;  1.0x10, 5.0
3 0.48 | 3.05 1.1x10,  8.8x10, 4.9
1.5 0.18 | 2.5 1.3x10 1.0x10 4.0
12 1.08 | 4.75 5.6x103 4.5x107 6.6
-3 8 0.90 | 4.25 1.8x10,  1.4xl0, 6.2
0.165x10 1.0 4 0.60 [ 3.75 5.6x10;  4.5x10, 5.6
3 0.48 | 3.25 1.8x10,  1.4x10, 5.2
1 0.00 | 2.75 5.6x10,  4.5x10, 4.6
1 0.00 | 2.25 1.8x10 1.4x10 4.2
5 0.70 | 5.1 1.3x103 1.0x102 7.0
-3 4.5 0.65 | 4.5 1.3x10, 1.0x10, 6.0
9,8x10 178 4 0.60 | 4.05 1.1x10,  8.8x1G, 5.9
2 0.30 | 3.5 1.3x10,  1.0x10, 5.0
?1 0.00 | 2.05 1.1x10 8.8x10 3.9
3 3 0.48 | 4.75 5.6x10: 4.5x1og 6.6
0.165x10 178 2 0.30 | 4.25 1.8x10,  1.4x10, 6.2
2 0.30 | 3.75 5.6x10;  4.5x10. 5.6
1 0.00 | 3.25 1,8xl0 1.4x10 5,2
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Appendix E - Metcalf and Horn (30)

Metcalf and Horn's Figure 6 was converted to Table E.1,
replotted in Figures 4 and 5. Metcalf and Horn's
Figure 7 was converted to Table E.2 and is part of

Figure 1.




Jable E.1

Taken from Figure € of Metcalf and Horn (30).

Calculated Calculated Log
Adapting Flash Adapting Recc.ery
Luminance Flash Energy Time
ft.L td. (td.sec) (log sec)
7.78x10§ 9.60x10, 9.60x10, z.01
3.89x105 4.80x107 4.80x106 1.93
7 .78x10S 9.60x107 9.60x106 1.82
3.89x104 4.80::106 4.80xlos 1.74
7.78x10 9.60x10 9.60x10 1.08
JTable E, 2

Taken from Figure 7 of Metcalf and Horn (30).‘

Target Luminance Recovery Time
mL ' Log mL sec log sec
7.0 7.5 0.9 11 1.05
0.45 0.48 -0.32 35 1.55
0.07 0.075 -1.12 93 1.9[__”__
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Appendix F - Miller (32)

Miller's Figure 1 was replotted and is reproduced
here as Figure 1. Some of her other data appear

here in Figures 3 and 9.




Appendix G - Miller (unpublished data)

Tables G.l1 - G.12 present the results of five experiments recently

completed and not yet reported in the literature.

Experiment (1)

A constant flash duration of 5 msec, with the flash luminance
reduced by 0.15 Neutral filter steps to a total reduction of
0.9 log units.

Experiment (2)
Constanrt Intensity x Time of Flash held at 3 x lO7 td. sec,

Duration rsnging from 0.54 - 5.0 msec.
Each subject ran a complete series on each of two days.

Experiment (3)

Constant flash duration of 1.5 msec.
Flash luminsnce reduced by 0.15 log unit steps.

Experiment (4)

Constant Intensity x Time Held at 6 x 107 td. sec.
Flash durations varied from 1.10 to 3.4 msec with one flash
having an exponential decay of the typical flash lamp form B.

Experiment (5)
Constant Intensity x Time held at k4.5 x 107 ta. sec.

Durations from 0.78 to 3.4 msec.
To convert these data to log time of recovery, 2.0 seconds have to
be subtracted from each time (or mean time) since the experimental pro-
cedure measures the recovery time as the time to two successive correct

responses to letters presented at 1 second intervals.




Iable G,1

Recovery Times (sec)

for Flash Duration of 5.0 msec, Letter Size 16.2'
{Two ssconds subtracied from.all fige

v e g TR R T WG TTRONEL,L | AR

)
- | Log
? ::\:sr;y Log Target Luminance (mL)
. |td.sec | Subject 2.45 0,75 0.30 =-0.37 =0.75 ~-1,20 -1.95 -2.12 |
' RB 7.0 13.5 17.5 27.0 31.0 57.0 78.0 112.0
TH 8.5 18.0 25.5 49.5 67.5 102.5 145.5 -
7.5 VK 8.0 17.5 26.0 44.5 60.0 69.5 164.5 -
IN 6.5 15.0 21,5 38.5 59,0 79.0 99,0 150.0
I8 6.5 12.5 20.5 37.5 41.0 64.0 76.0 108.5
Avg(sec) 7.3 15.3 22.2 39.4 ©51.7 74.4 112.6 123.5
Avg(log sec)| 0.724 1.124 1.330 1.573 1.696 1.860 2.044 2.085
RB 7. 14.0 18.0 26.0 30.5 45.0 74,0 100.0
TH 8.0 17.0 25.5 48.0 60.5 72.5 183.0 -
7.35 VK 7.5 16.5 20.5 41.5 52.5 67.5 129,0 148.0 ton-
N 5.5 9.0 16.0 21.0 29.0 33.0 49.0 153.s{q‘gfsd°“
IS 5.0 17.5 21.0 29.0 40.0 55.0 90.0 101,5|-3°ledata
Avg(sec) 6.7 14.8 20.2 33.1 42.5 ©54.6 105.0 125.7
Avg(log sec)|0.672 1,107 1.260 1.493 1,608 1,721 2,013 2,092
RB 6.5 12.0 15.0 23.0 30.0 44.5 65.0 91.0
TH 10.0 16.5 21.0 38.0 60.5 96.0 122,0 145.0
7.20 VK 6.5 11.0 18.0 32.5 45.0 59.5 72.0 108.0
JN 7.0 14.0 19.5 31.5 41.0 48.0 97.0 128.5
IS 5.5 9.0 12.5 18.0 31.0 37.0 46.5  80.5
Avg(sec) 7.1 2.5 17,2 28.6 41.5 57.0 B0.5 110.6]
Avg(log sec)} 0.708 1.021 1,182 1.425 1,596 1.740 1,895 2.036
RB 6.0 12.0 15.5 24,0 28.5 37.0 49.0 60
TH 7.0 11.5 15.5 23.5 55.0 60.0 90.0 163.5
7.05 VK 6.5 11.5 .17.5 26.0 34.0 60.5 102.5 144.0
IN 6.0 17.0 20.0 29.5 36.5 42,5 89.0 105.0
Is 4.0 7.5 11.5 16.0 21,0 23.5 41.0 51,5
Avg(sec) 5.9 11.9 16.0 23.8 35.0 44.7 74.3 104.8
Avg(log sec)| 0.592 0.996 1.146 1.338 1,518 1.630 1,859 2,012
RB - 9.0 13.0 17.0 24,5 30,0 33.5 48.5
TH 8,0 12.0 16.5 28.5 33.0 56.0 89.0 99.0
6.90 WK - 9.0 13.5 18.5 32.5 53.5 89.0 139.5
iN - 11.5 i5.5 24.5 31.5 39.5 75.5 82.5
IS - 8.5 12.0 16.5 21.0 28.0 42.5 56.5
Avg(sec) 10.0 14.1 21.0 28.5 41.6 65.9 85.2
Avg(log sec) 0.903 1,083 1.279 1.424 1.598 1.806 1.920
G-2
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Table G,1

Log
g::esrl;y Log Target Luminance (mL)
td.sec | Subject 2.45 0.75 0,30 -0.,37 =-0.75 =-1,20 ~-1,95 =-2.,12
RB - 6.0 10.0 14,5 19,0 22.5 33,0 42.0
JH 6.5 10.0 13.0 19.5 25,5 32.0 61.0 129.0
6.75 VK - 8.5 12,5 19.0 22.5 26.0 44.5 64.5
JN - 9.0 12,5 16.0 22.0 27.0 56,0 66.0
IS - 5,5 9,0 12,0 15,0 18,5 22,0 45,0 |
Avg(sec) 7.8 11.4 16.2 20.8 25.2 43.3 69.3
Avg(log sec) 0.764 0.973 1.152 1,274 1,366 1,616 1.828
RB - 7.0 9.0 13.0 16.0 19,0 25,0 48.0
JH 9.5 14.5 18.0 21.5 29.0 37.0 47,0 66.5
6.60 VK - 7.0 10.5 14.5 19,0 22,5 31,5 51.0
‘ IN - 8.5 12.0 16.0 20,0 23.0 36.5 51.0
JS - 6.0 - 10.0 13.0 15.5 22,5 29.0
Avg(sec) 8.6 12.4 15.0 19.4 23.4 32,1 49.1
Avg(log sec) 0.820 1.017 1.114 1,240 1.330 1.479 1.673




Jable G, 2

Recovery Times (sec)
for Flash Duration of 5,0 msec, Letier Size 28,.4'

Log
g\:};y Log Target Luminance (mL)
td.sec| Subjeci 2.45 0.75 0.30 -0,37 =-0.75 =-1,20 =-1.95 -2._1_3_4
RB 7.5 13.5 17.0 28.0 36,0 45,0 55.0 74.5
JH 8.0 15.0 19.5 30.5 42,5 65.0 85.0 119.0
7.5 VK 7.0 14,0 18,0 30.5 36.5 54,5 72.5 99.0
JN 6.0 13,0 19.0 28.5 '40.0 54.5 91.0 101.0
IS 5.5 11,5 16.0 24,0 33.0 48,0 62,0 70.0
Avg(sec) 6.8 13.6 17.9 28,3 37,6 53.4 73.1 92.7
Avg-2 sec 4.8 11.6 15.9 26.3 35,6 51.4 71.1 90,7
Avg(log sec)|0.681 1.064 1.201 1.420 1.551 1,711 1,852 1,958
RB 7.0 10,0 14.0 21.0 27.0 32.0 48,0 80,5
JH 7.0 13.5 21.5 33.0 38.5 58.0 88.0 101.5
7.35 VK 7.0 14,0 18.0 25.0 34,0 56.5 77.5 92.5
JN 5.0 12,5 18.5 26.5 37.0 52.5 83.0 111.5
IS 4.0 9.0 13,5 17,5 32.0 35.0 58,5 82,5
Avg(sec) 6.0 11.8 17.1 24.6 33.7 46.8 71.0 93.7
Avg=-2sec) 4.0 9.8 15.1 22.6 31.7 44.8 69.0 91.7
Avg(log sec) (0,602 0.991 1,179 1.354 1,501 1.651 1.839 1.962
- - - - ey [—
RB 6.0 10.0 14.0 18.5 23.5 32.0 53.0 58.0
TH 7.0 13.5 17.0 28.0 40.0 60.0 74.5 125.0
7.20 VK 7.0 13.0 16.5 26.5 39.0 61.0 75.5 87.5
JN 4.5 13.0 17 .5 22.5 31.5 36.0 67.0 76.0
JS 4,5 15,0 19.0 22.5 26.0 39.0 46,0 51,5
Avg(sec) 5.8 12.9 16.8 23.6 32.0 45.6 63.2 79,6
Avg-2 sec 3.8 10.9 14,8 21.6 30.0 43,6 61,2 77 .6
Avg(log sec)]0.580 1.037 1,170 1,334 1,477 i.639 1.787 1.890
RB 6.0 10.0 13.0 16.5 20.0 24,0 35.5 51.0
JH 6.0 11.0 14,5 21,5 28.5 40,0 79.0 101.0
7.05 VK 5.5 10.0 13,5 17 .5 23,0 35.5 77.0 88.0
IN 5.5 10.5 14,0 20.5 24,5 34.0 57.5 64.0
IS 4.0 8.0 11,5 _17.0 _20.5 _25.0  34.0 44.5
Avg(sec) 5.4 9.9 13.3 18.6 23.3 31.7 56,6 69.7
Avg-2 sec 3.4 7.9 11.3 16.6 21,3 29.7 54.6 67 .7
Avg(log sec) ] 0.531 0.898 1.053 1.220 1,328 1,473 1,737 1,831




Table G.2 (continued)

Log
g\a;gy Log Target Luminance (mL)
td,sec | Subject 2,45 0.75 0.30 -0.37 =-0.75 =-1,20 =-1,95 =-2,12
RB - 7.0 12,0 15.0 21,0 27.0 38.0 45.0
JH - 9.5 14,0 17.5 21,0 28.0 54.5 70.5
6.90 VK - 9.0 13.0 17.0 21.0 25.0 44.0 55.5
JN - 9.0 . 13,0 19.5 23.5 32.5 56.5 61.5
]S - 6.5 10.5 14,0 18.0 22.0 25.5 31,5
Avg(sec) 8.2 12,50 16,6 20.9 26.9 43,7 52.8
Avg-2 sec 6.2 10.5 4.6 18.9 24.9 41,7 50.8
Avg(log sec) 0.792 1,021 1,164 1.276 1.396 1.620 1.706
RB - 7.0 12.0 18.0 22,5 27.0 31,0 35.0
JH - 8.5 11,5 15.5 22,0 25.5 39.5 68.0
6.75 VK - 8.0 14,0 17.5 20.5 24.5 40.0 43.5
IN - 7.5 11.0 14.5 18,0 29.0 53.5 64.0
IS - 5.0 - 10,5 15,0 19,0 24.0 29,5
Avg(sec) 7.2 9,7 1s.2 19,6 25,0 37.6 48.0
Avg-2 sec 5.2 7.7 13.2 17.6 23.0 35.6 46.0
Avg(log sec) 0.716 0,886 1.121 1,245 1,362 1.551 1,663
RB - 6.5 10.0 4.0 11,5 21.0 27.0 31.0
TH - 6.0 10.0 13.5 17,0 21.5 33.0 41.5
6.60 VK - 6.5 9.5 13.0 16,5 20.0 26,0 30.5
IN - 7.5 11.0 4.5 18,0 20.5 23.5 29.5
IS - 5,0 - 8,5 12,0 16,0 19,0 22,5 |
Avg(sec) 6.3 8.1 12,7 15,0 19.8 25.7 31.0
Avg-2 sec 4,3 6.1 10.7 13.0 17,8 23.7 29.0
Avg(log sec) 0.633 0.785 1,029 1,114 1,250 1.375 1.462
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Table G.3

Recovery Times (sec)
for Flash Duration of 1.5 msec, Letter Size 16.2'

.~ na @ o my tr SR

Log
;::;:y Log Target Luminance (mL)
td.sec | Subject 2.45 0.75 0.30 =-0,37 -0.75 -1.20 -1,95 =-2,12_
RB 7.0 13.0 16.5 25.5 40.0 66.5 105.0 137.0
JH 9.0 15.0 20.5 64.5 86.5 130.0 183.0 -
7.95 VK 10.0 18.0 24,0 43,0 60.5 78.5 163.5 168.0
IN 7.0 19,0 23.5 42,0 53.0 83,0 173.0 -
]S 6.0 14.0 19.0 22.5 37.5 52.5 129,5 142,5
Avg(sec) 7.8 15.8 20.7 39.5 ©55.5 82,0 150.8 149.2
Avg-2 sec 5.8 13.8 18.7 37,5 53.5 80.1 148.8 147.2
Avg(log sec)| 0.764 1,140 1.272 1.574 1,728 1.904 2,173 2,167
RB 7.0 12,5 19.0 28.0 40.0 60,0 96.0 109.0
JH 9.0 15.0 20.0 56.0 - 131.0 212.5 -
7.80 WK 8.5 17.5 24.0 48,0 82.5 103,5 197.0 -
IN - 16,5 22.0 38,0 52.0 76.0 134.0 164.0
IS 5.5 _14.0 18.5 28,0 S51.0 67.5 82,5 _  117,5 |
Avg(sec) 7.5 15.1 20,7 39.6 656.4 87.6 144.4 130.2
Avg-2 sec 5.5 13.1 18.7 37.6 54.4 85.6 142.4 128.2
Avg(log sec)| 0.740 1.117 1.272 1.575 1.736 1,933 2,152 2,107
RB 6.5 13,0 7.5 28.5 46.0 57.5 90.0 106.0
TH 10,5 16,0 22.5 64.5 §5.0 101.0 142.0 -
7.65 VK 8.5 18,0 23,0 43,5 55,0 100.0 178.0 196.0
IN 7.0 13,0 23.0 42,5 58,0 80.0 139.0 151.0
IS 5.5 16,0 19,5 39,0 56,0 67,5 _108,0 126,0 _
Avg(sec) 7.6 15,2 21,1 43,6 60.0 81,2 131.4 144.7
Avg-2 sec 5.6 13.2 19,1 41,6 58,0 79.2 129.4 142.7
Avg(log sec)| 0.748 1.121 1,290 1,619 1.763 1,899 2,111 2,155
RB 6.0 12.0 17,0 36.0 39.5 67.0 113.0 122.0
JH 9.0 16.0 25.5 52.5 83,0 117.5 201.0 226.5
7.50 VK 8.5 19.0 23.0 39.0 75.5 103.,5 183.5 202.0
JN 6.0 15,0 23.0 37.0 49.0 86.0 141.0 198.0
1S 6.0 12.5 16,0 29.0 51,5 58.5 87.5 105.5
Avg(sec) 7.1 14.9 20.9 37.5 59.7 86.5 145.2 170.8
Avg-2sec 5.1 12.9 18.9 35.5 57.7 84,5 143.2 168.8
Avg(log sec)] 0.708 1.111 1,277 1,550 1,761 1,927 2.155 2.228




Table G.3 (continued)

B el LN L LI TP YT SRR Y

Log
Flash Log Target Luminance (mL)
Energy
td.sec | Subject 2,45 0,75 0.30 -0.37 -0.75 -1,20 =1,95 =2,12
RB - 12,0 16.0 26.5 43,0 58.5 92.0 127.,0
JH - 28,0 2.5 41.5 69.0 94.5 112.5 173,55
7.35 VK - 19.0 23.0 36.5 57.0 84.0 97.5 166.5
IN - 12,0 21,0 31.0 45.0 66.0 154.0 180.5
IS - 12,5 16,5 26,5 34,0 44,5 87,0 138,5
Avg(sec) - 16.7 20.8 32.4 49.6 69.5 108.6 157.2
Avg-2 sec - 14.7 18.8 30.4 47.6 67.5 106.6 155.2
Avg(log sec)| - 1,167 1.274 1.483 1.678 1.829 2.029 2,190
RB - 10.0 13.5 20.5 35.0 46.0 72.0 81,0
JH - 16,0 21.0 46.5 66,0 90.5 138.5 -
7.20 VK 7.5 15.0 19.5 30.5 42.5 62.5 117.5 129.5
JN - 15.0 19.0 26.0 43.0 62.0 88.0 123.0
IS - 11.5 14,5 19,5 26.5 30,0 S57,5 66,5
Avg(sec) 13.5 17.5 28.6 42.6 58.2 94.7 100.0
Avg-2 sec 11,5 15.5 26.6 40.6 S56.2 92,7 98.0
Avg(log sec) 1.061 1.180 1.425 1.609 1,750 1.967 1.991
RB - 11.0 17.0 22,0 34.0 44.0 62.0 89.0
JH - 1.9 13,5 32,0 59.5 72.0 102.0 136.5
7.05 VK - 12,5 16.0 25.0 46.0 56.5 80.5 102.5
JN - 11.0 15.0 29.0 40.0 48.0 70.0 105.5
JS - 8.5 12.0 15.5 24,0 33,5 64.5 76.5
Avglsec) - 11.2 15.9 24.7 40.7 50.8 75.8 102.0
Avg-2 sec - 9.2 13.9 22,7 38,7 48.8 73.8 100.0
Avg(log sec)_]L - 0.964 1,143 1.356 1.588 1.688 1.868 2.000




Table G.4

Recovery Times (sec)
for Flash Duration of 1.5 msec, Letter Size 28.4'

Log
Flash Log Target Luminance (mL)
Energy
td.sec! Subject 2.45 0,75 0,30 =-0.37 -0,75 =-1,20 -1,95 =2,12
RB ] 6.0 11.0 15.5 23.0 28,5 36.5 64,5 71.0
JH 8.0 13.5 17,5 43.0 58.5 76.5 109.5 135
7.95 VK 0 9.5 16,0 22.0 36.0 40.5 76.5 109.5 201.5
JN 8.0 15.0 20,0 32.5 43.0 63.0 96.5 110.5
‘ I8 5.0 11,0 16,0 25,0 35,5 44,0 78.0 82,5
Avg(sec) 7.3 13.3 18.2 31,9 41,2 59,3 91,6 120.1
Avqg-2 sec 5.3 11.3 16.2 29,9 39.2 57.3 89.6 118,1
Avg(log sec)f 0.724 1.053 1.209 1.476 1,593 1.758 1.952 2,072
R3 7.0 12.0 15.0 19.0 33.0 41.5 78,5 85.0
JH 8.5 16.0 21,0 37.5 53,0 83.0 102,5 111.5
7.8 VK 7.5 14.0 17.5 28.5 44,5 74.0 80.0 98.0
N 6.5 13.5 20.0 32.0 37.0 66.0 85.0 105
IS 5.0 13.5 18.5 25,0 31,0 41,0 99.0 107,5
Avg(sec) 6.9 13.8 18.4 28.4 39.7 6l.1 89.0 101.4
Avg-2 sec 4,9 11.8 16.4 26.4 37.7 59.1 87.0 99.4
Avg(log sec)] 0,690 1,072 1.215 1.422 1.576 1,772 1,939 1.997
RB 6.0 11.0 15.0 18.5 27.0 35.0 54.0 75.5
JH 7.5 14.0 18.5 36.5 42,0 79.0 103 116.5
7.65 VK 8.0 14.5 19.5 31,0 43.5 72.0 91.5 132
IN 6.0 13.0 17.0 27.0 38.0 51.0 80.0 122
IS 4.5 10,5 14,5 25,5 31,0 53,0 75.0 87,5
Avg(sec) 6.4 12,6 16.9 27.7 36.3 58.0 80.7 106.7
Avg=-2 sec 4.4 10.6 14,9 25.7 34.3 56.0 78.7 104,7
Avg(log sec)] 0.643 1.025 1.173 1,410 1.535 1.748 1.896 2.021
RB 6.5 11.0 14,0 23.5 27 .5 38.0 59.5 78,0
JH 6.5 13.0 18.0 31.0 44.0 70.0 101.5 119.5
7.5 VK 8.0 15.5 22.0 35,0 56.4 76.5 109.,5 122.5
JN 6.0 12,0 16.5 24.0 32.0 45.0 72.0 104
e 5.5 10.0 14,0 23.0 30,0 34.0 67.5 88.5
Avg(sec) 6.5 12,3 16.9 27.3 36.0 52.7 82.0 102.5 |
Avg-2 sec 4.5 10,2 14.9 25.3 34.0 50.7 80.0 100.5
Avg(log sec)} 0.653 1.013 1,173 1,403 1.531 1,705 1.903 2,000




ab 4
Log
Flash Log Target Luminance (mL)
Energy
td.sec | Subject 2.4 0.75 0.30 -0.37 -0,75 =-1.,20 -1,95 -2.12
RB - 12.0 15.0 19,0 22.5 33.0 50.5 60.0
JH - 15,0 19,0 28.5 50.5 75,0 134 159.5
7.35 VK - 14,0 20.0 28,0 44,0 7.5 98.5 139.5
JN ~ 13.0 17.0 23.0 33.0 46.0 66.0 104
]S - 9.5 14,0 23,5 27 .5 41.5 46.5 . 80.C
Avg(sec) 12,7 17.0 24.4 35.5 50.5 79.1 108.6
Avg-2 sec 10.7 15,0 22.4 33.5 48.6 77.1 106.6
Avg(log sec) 1.029 1.176 1,350 1,525 1.687 1,887 2.029
RB - 10.0 15.0 20,0 27 .5 35.0 51.0 88.0
JH - 15.0 19.0 30,5 43,5 61.0 109 131
7.2 VK - 11.5 15.0 21.0 34.0 47.0 82.0 99.0
JN - 12,0 15.5 19.0 29.0 42.0 57.0 92.0
]S - 7.5 11.0 16.0 21.0 26,0 30.0 62.5
Avg(sec) 11.2 15.1 21.3 31.0 42,2 65.8 94,5
Avg-2 sec 9.2 13.1 19.3 29.0 40.2 63.8 92.5
Avg(log sec) 0.964 1.117 1.286 1.462 1.604 1.805 1.966
RB - 8.0 13.0 17.5 21,0 34.0 49,5 6l1.5
JH - 13.0 19.5 32.0 59.5 72.0 102 136.5
7.05 VK - 10.0 15.0 19.5 24.5 34.5 61.8 83.0
JN - 13.0 17.0 25,0 29.5 45.0 65.0 98.5
IS - 7.0 10,0 14,5 18,0 25.0 46.0_ S1.5
Avg(sec) 10.4 14.9 21,7 30.5 42,1 64.9 8C.2
Avg-2 sec 8.4 12.9 19.7 28.5 40.1 62.9 84.2
Avg(log sec) 0.924 1.111 1.294 1.455 1.603 1.799
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Iable G.5

Recovery Times (sec)
for Log Flash Energy of 7.5 td.sec, Letter Size 16,2’

Flash
Dura- Log Target Luminance (mL)
tion
(sec) Subject 2.45 0.75 0.30 =-0.37 =-0.75 -1,20 =-1,95 =-2,12
RB 5.0 11.0 16.0 24.0 32.5 49.0 99.0 121.5
JH 8.0 13.5 23,5 36.5 64.0 94.0 - -
0.54 VK 10.0 14.0 18.5 65.5 77.0 130,0 217.0 -
IN 6.5 15.0 21.0 28.0 51.5 69.5 132.0 169.5
IS 5.0 12.0 19,0 32.0 37,0 45,0 69.0 147.0
Avg(sec) 6.9 13.1 19,6 37.2 52.4 77.5 129.2 146.0
Avg-2 sec | 4.9 11.1 17.6 35.2 50.4 75.5 127.2 144.0
Avg(log sec)| 0.690 1.041 1.230 1.544 1,699 1.875 2,103 2,158
RB 8.5 14.0 18.0 39.0 45.5 57.0 93.0 132.5
JH 9,5 1.5 27.0 56.5 108,0 136.0 191.0 -
0.78 VK 8.0 15.0 20.0 52.5 64.0 139.5 230.5 -
JN 7.0 13.5 19.5 37,0 51.0 70.0 119.5 195.0
IS 4.0 11.5 16,0 27.0 36,0 46,0 91.5 110,0
Avg(sec) 7.4 13.9 20.1 42.4 60.9 89.7 145.1 145,8
Avg-2 sec | 5.4 11.9 18.1 40.4 58,9 87.7 143.,1 143.8
Avg(log sec)| 0.723 1.041 1.255 1,602 1.763 1,939 2,155 2,158
RB 6.5 13.5 18.0 39.0 46.0 63.0 105,0 152,0
JH 8.5 17.0 23.0 53.5 67.0 123.0 268.0 -
1,10 VK 7.0 15,0 19,0 48.0 56.0 89.0 130.0 194.,C
IN 7.0 16.0 23.0 36.0 67.5 87,5 132.5 144,0
IS 5.0 9.0 14.5 23,5 30.0 43,0 79.0 120,0
Avg(sec) 6.8  14.1 19.5 40.0 53.3 82,1 142.9 152.5|
Avg-2 sec | 4.8 12.1 17.5 38.0 51.3 80.1 140.9 150.5
Avg(log sec)| 0.681 1.079 1.230 1.579 1,707 1,903 2,146 2,176
RB 7.0 14.0 16.5 26.5 34.0 53.0 90.0 148.0
JH 8.0 16.5 31.5 69.0 93.0 113.5 158.C -
1,54 VK 8.0 16.0 22.0 47.5 91,0 146.5 174.0 238.5
IN 6.5 18.0 21.5 40.0 49.0 70.0 110.0 156.0
18 5.5 12,5 17.0 25.0 33.0 52,5 95,0 127.0
Avg(sec) 7.0 15.4 21.7 4l.6 60.0 87.1 1i25.4 167.3
Avg-2 sec | 5.0 13.5 19,7 39,6 58.0 85.1 123.4 165.3
Avg(log sec)] 0,699 1.113 1,278 1,591 1,763 1,929 2,083 2,217
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Table G.5 (continued)

Flash
Dura- Log Target Luminance (mL)
tion
(sec) Subject 2,45 0.7 0.30 =-0.37 -0.75 -1.20 -1,95 =-2,12
RB 8.0 13.0 16.5 25.0 45.0 61.0 93.0 119.0
JH 9.5 20.0 29.0 61.0 75.0 118.0 134.5 -
2.4 VK 8.5 14.5 23.0 61.0 82.0 117.5 146.5 173.5
JN 6.5 15.5 22.0 40.5 55.5 74.5 108.0 136.5
JS 5.5 11.5 15,0 25.0 42.5 67.0 76,0 120.5
Avg(sec) 7.6 14.9 21,1 42,5 60.0 87.6 11l1.6 137.4
Avg-2 sec 5.6 12.9 19,1 40.5 58.0 85.6 109.6 135.4
Avg(log sec)} 0.748 1.113 1,278 1.602 1.763 1.929 2,037 2.130
RB 8.0 13.0 18,0 31.0 37.0 72,0 93.5 145.0
JH 12,5 19.0 28.0 53.0 75.0 112,0 203.5 -
3.4 VK 8.0 16.5 23.0 55.5 66.0 99.0 166.5 200.0
IN 7.5 17.5 34.0 40,0 65.0 80.5 118.0 140.5
JS 5.0 14,5 18,0 27.5 52.0 58.0 130.5 168.5
Avg(sec) 8.2 16.1 24,2 41,4 59.0 84.3 142.4 163.5
Avg-2 sec 6.2 14.1 22.2 39.4 57.0 82.3 140.4 161.5
Avg(log sec)| 0.792 1.146 1,342 1,591 1.755 1.913 2.146 2.206
RB 6.5 13.0 18.0 26,0 44.0 63.5 85,0 99.0
JH 10.0 19.5 28.5 54.0 83.0 108.0 178.0 -
5.0 VK 9.5 18.5 41,0 56,0 110.0 115.0 136.5 221.5
JN 10.0 17.0 23.5 37.5 49,5 62.0 95.0 107.5
IS 5.0 12,0 20,0 29,0 36,0 57.0 66,5 98.5 |
Avglsec) 8.2 16.0 26.2 40.5 65.7 82.1 112,2 131.,3
Avg-2 sec 6.2 14,0 24,2 38.5 63.7 80.1 110.2 129.3
Avgllog sec)] 0.792 1,146 1.380 1.579 1.799 1.903 2.041 2.110
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TLable G,6

Recovery Times (sec)
for Log Flash Energy of 7.5 td.sec, Letter Size 16,2’

Flash
Dura- Log Target Luminance (mL)
tion
td.sec | Subject 2.45 0,75 0,30 -0.37 -0.75 =1,20 =-1.95 =2.12
. IT.0 15.0 23.0 37.0 54.0 68.0 101.0
JH 9.0 20,0 30.0 69,5 91.5 272.0 - -
0.54 VK 8.5 15.5 20,0 41.0 51.0 8l1.0 141.0 164.5
IN 8.0 14.0 20.0 43.5 69.0 90.0 136.0 196.5
IS 4,0 8.5 12.5 16,0 _24.0 32,0 63.0 81,0 |
Avg(sec) 7.3 17.5 19.5 38,6 54,5 105.8 102.0 135.8
Avg-2 sec |5.3 1.5 17.5 36.6 52.5 103.8 100.0 133.8
Avg(log sec)} 0.724 1,190 1,243 1.564 1,720 2.017 2.00 2.127
RB 7.0 11.5 16.0 27,0 37.5 65.5 103.0 112.0
JH 14.5 21.0 32,5 75.5 114.0 185.5 257.5 -
0.78 VK 9,0 14.0 20.0 44.0 59.5 94,5 157.5 228.5
IN 7.0 14,5 21.5 34,5 57.0 73.5 115.0 158.0
IS 4,5 9.0 13,0 17,5 25,0 30.0 68.5 82.5
Avg(sec) 8.4 14.0 20.6 39.7 58,6 89.8 140.3 145.3
Avg-2sec |6.4 12.0 18.6 37.7 56.6 87.8 138.3 143.3
Avg(log sec) ] 0.806 1,079 1,270 1.576 1.753 1.944 2.140 2.155
RB 6.0 10.0 14.0 36.5 43.5 61,5 75.0 114.5
JH 9.5 21,5 33.5 98,0 112.0 142.0 309.0 -
1,10 WK 9.5 15.5 24,0 46.5 52.0 94,0 137.0 225.5
IN 7.5 16.0 23,0 50.5 75.5 88.0 131.5 186.5
IS 3.5 8,5 12,0 16,5 22,5 36,5 75,0 82,5
Avg(sec) 7.2 14.3 21.3 49.6 61,1 84,4 145.5 152.3
Avg-2 sec |5.2 12.3 19.3 47.8 59,1 82.4 143.5 150.3
Avg(log sec)[0.716 1.090 1,286 1.678 1.777 1.925 2.155 2.176
RB 7.0 11,5 19,0 36.5 44,0 55,0 86.5 109.0
JH 12.0 18,0 39.5 57.5 97.0 183.0 271.0 -
1.54 VK 9.0 18,0 26.0 53.0 77.5 105.0 140.0 166.5
IN 7.5 17.0 21.5 39.0 68.0 79.0 133.5 214.5
IS 4.5 8.5 14,0 18,0 25.0 28,5 58.0 69.5
Avg(sec) 8.0 14.6 24.0 40.8 62.3 90,1 137.8 139.9
Avg-2sec |6.0 12,6 22,0 38,8 60.3 88,1 135.8 137.9
Avg(log sec) | 0.778 1.100 1.346 1.589 1,780 1.945 2.133 2,140
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Table G.6 (continued)

Flash
32?- Log Target Luminance (mL)
td.sec | Subject 2.45 0.75 0.30 -0.37 =-0.75 =-1,20 =-1,95 =2,12
RB 7.5 12,5 17.0 30.0 37.5 €7.5 95.5 130,0
JH 12.0 22,5 34.5 62,0 100.5 163.0 196.0 -
2.4 VK 7.0 14.5 22,5 38.5 57.5 83.5 125.5 198.,5
JN 6.5 17.5 25.5 50.0 5.5 8l1.0 100.5 139.0
JS 5.0 1.5 16,5 28,0 37.5 52.5 96.0 105.,5
Avg(sec) 7.6 15.7 23.2 41.7 59.7 89.5 122.7 114.¢6
Avg~2 sec 5.6 13.7 21.2 39.7 57.7 87.5 120.7 112.6
Avg(log sec!| 0.748 1,137 1.326 1.599 1,754 1,942 2.828 2,053
RB 7.5 13.5 18.0 26,0 38.0 60.0 105.0 135.0
JH 9.0 16.5 28.0 78.5 89.0 136.5 174.5 -
3.4 VK 9.5 20.0 25.0 41.0 82.5 102.0 128.5 172,0
JN 7.0 18.0 24,0 31.5 53.0 98.5 129.0 148.0
JS 4.0 10.0 13.5 19.5 24,0 36.0 65.0 84.5
Avg(sec) 7.4 15.6 21.7 39.3 57.3 86.6 120.4 134.9
Avg-2 sec 5.4 13.6 19.7 37.3 55.3 84.6 118,4 132.9
Avg(log sec)|0.732 1.134 1.295 1.572 1.743 1,927 2,072 2.124
RB 7.0 13.0 17.5 29.5 47.0 64.5 83.0 106.0
JH 16.5 20.0 33.0 47.0 72,0 167.0 311.5 -
5.0 VK 9.0 16.0 25.0 51.0 63.0 87 .5 128.5 191.0
JN 7.5 20.5 27.5 47.5 67.5 89.5 121.0 197.0
JS 7.0 13.0 16.5 22.5 41.0 50,0 100.0 114.5
Avg(sec) 9.4 16.5 23.9 39.5 58.1 91,7 168.8 152.1
Avg-2 sec 7.4 14.5 21.9 37.5 56.1 89.7 166.8 150.1
Avg(log sec)| 0.869 1.161 1.340 1.574 1.749 1,953 2.223 2.176

G-13




Jable G.7

Recovery Times (sec)
for Log Flash Energy of 7.5 td.sec, Letter Size 28.4'

Flash .

Dura~ Log Target Luminance (mL)

tion | :

(sec). ]| Subject 2.45 0.75 0.30 -0.37 -0,75 -1,20 -1,95
- RB 6.0 10.0 14.0 18.5 25.0 33.0 54.0
: JH 8.5 12,0 17.0 27.0 42.0 58.0 113.5

0.54 VK 7.0 12.5 16.0 31.0 43.5 50.5 162,5
' IN 6.0 10.5 14,0 19.0 25.0 45.0 77.0

]S 4,5 9.0 12,0 18,0 21,5 34,5 66.0
Avg(sec) 6.4 10.8 14.6 22.7 31.4 44,2 94.%

Avg-2 sec |4.4 8.8 12.6 20.7 29.4 42,2 92.6
Avg(log sec)|0.643 0.944 1.079 1.301 1.462 1.623 1.963

RB 6.0 11,0 14,5 20.0 29,0 35.0 56.0

JH 8.0 12.5 16.5 28.0 41.5 67.0 114.0

0.78 VK 7.5 13.5 17.5 39,0 50.0 62.0 71,0
JN 7.0 12.5 16.0 25.0 36.5 62.0 95.0

IS 5.5 9,0 13,0 18.5 25.5 32.0 54.0

Avg(sec) 6.8 11.7 15.5 26.1 36.4 51.6 78.0

Avg-2 sec |4.8 9,7 13.5 24,1 34,4 49.6 76.0
Avg(log sec)|0.681 0.986 1.113 1.380 1.531 1.690 1.880

RB 6.0 11,0 16.0 24,0 31.0 37.0 70.0

JH 8.5 15.0 20,5 36.0 56,0 97.0 133.0

1.10 VK 7.0 12,5 18,0 31,0 52.0 74,0 125,5
IN 7.0 14.5 21,5 34.5 42,5 61,5 89,0

IS 5.0 11.5 16.0 26.0 39.0 50.5 88.0
Avg(sec) 5.7 12.9 18.4 30.3 44.3 64.0 101.1

Avg-2 sec | 4.7 10.9 16.4 28.3 42.3 62.0 99.1
Avg(log sec)| 0.672 1.041 1.204 1.447 1.623 1.792 1,995

RB 6.5 11.5 16.5 20.5 27.0 38.0 53.5

JH 8.5 14.0 19,5 32,0 52.0 68.0 122.0

1.54 VK 8.5 13.0 18.0 S50.0 57.0 94.0 126.0
IN 7.5 14.5 19.5 29.0 45.0 57.0 92.0

18 5.0 10.5 14.5 23.5 28.5 48.5 64.0

. Avg(sec) 7.2 12.7 17.6 31.0 41.9 +61.1 91.5
Avg-2 sec | 5.2 10,7 15.6 29.0 39.9 59.1 89.5
Avg(log sec)] 0.716 1.029 1.176 1,462 1.602 1.770 1.949




Flash
3:::- Log Target Luminance (mL)
(sec) Subject 2.45 0.75 0,30 -0,37 9,25 =-1,20 -1,95 =2,12
RB 6.0 11.0 14.0 22,5 30.0 40.0 81,0 85.5
JH 8.0 1.0 21,0 33.0 57.0 78,0 118.,5 -
2.4 VK 8.0 14,0 18.5 29.0 47.0 64.5 - -
JN 7.5 15.0 20.5 30.5 39.0 69.5 86.0 108.5
JS 6.0 13.0 17,0 25.0 29,0 48.5 94.0 113.0
Avg(sec) 7.1 13.6 18,2 28,0 40.4 60.1 94,8 103.3
Avg-2 sec 5.1 11.6 16.2 26.0 38.4 58,1 922.8 101.3
Avg(log sec) |0.707 1.041 1,204 1.415 1.579 1.763 1.968 2,004
RB 7.5 12.5 16.0 24.0 29.0 43.0 62.5 86.0
JH 8.5 17.6 22,0 31.0 48,5 83,0 119.5 -
3.4 WK 8.0 15.6 19.0 33.5 46.0 74.0 98.0 140.0
JN 7.5 13,0 17.5 35.0 39,5 50,5 95.0 102.5
JS 5.0 12.5 16.0 21.0 26.0 48.0 80.0 84,5
Avg(sec) 7.3 14.0 18.1 28.9 37.8 59.7 91.0 103.2
Avg-2 sec 5.3 12,0 16.1 26.9 35.8 57.7 89,0 101.2
Avg(log sec) |0.724 1.079 1.204 1.431 1,544 1.755 1.949 2.004
RB 6.0 12.5 17.0 21.5 28.0 39.5 72.0 91.5
JH 9.5 is.5 21.0 40.0 65.0 87.0 127.0 -
5.0 WK 9.0 17,0 24.0 44,0 55.0 97.0 150.0 192.,0
JN 9.0 16.0 23.0 32,0 45.5 58.5 76.5 99.5
JS 6.0 12,5 16,0 20,0 35.0 46.0 88.5 98,5
Avg(sec) 7.9 14,7 20,2 31.5 45.7 65.6 102.,8 120.3
Avg-2 sec 5.9 12.7 18.2 29.5 43.7 63.6 100.8 118.3
Avg(log sec) 10.770 1.079 1.255 1,462 1.633 1.799 2.004 2.071
G-15




Jable G.8

Recovery Times (sec)
for Log Flash Energy of 7.5 td.sec, Letter Size 28.4'

P . o

Flash
Dura- Log Target Luminance (mL)
tion
gsec} Subject 2,45 0.?5 ©0.30 -0.37 -0.75 =-1.20 =-1,95 =2,12
[ RB 6.5  10.5 14.0 17.5 26.0 34.0 60.5 85.0
TH 9.0 14,5 19.5 40.0 52.5 84,0 148.5 -
0.54 VK 7.0 12,0 16.5 25.0 34,0 42.0 74.0 113.5
JN 6.0 12,0 17.5 24,0 35.0 44,0 81,0 111.5
15 3.0 7.0 10,0 15.0 18.0 22,0 35.0 40.5
Avglsec) 6.3 11.2 15.5 24.3 33.1 45.2 79.8 87.6
Avg-2 sec |4.3 9.2 13,5 22,3 31.1 43,2 77.8 85.6
Avg(log sec) | 0.633 0.963 1.113 1.342 1.491 1.633 1.886 1,929
RB 6.5 11.0 14.5 22,5 29,0 36.5 70.0 106.5
JH 9.5 14,0 21,0 43.0 68.5 91.5 155,0 -
0.78 VK 7.5 12,0 16.5 21,5 30.0 49.5 72,0 107.5
IN 5.0 14,0 20.0 31.5 41.0 60.0 103.0 127.0
IS 4,0 11,0 15.5 22,5 39,0 56.5 72.0 89,5
Avg(sec) 6.5 12,4 17.5 28,2 41.5 58.8 94,4 107.6
Avg-2 sec | 4.5 10.4 15.5 26.2 39.5 56.8 92,4 105.6
Avg{log sec)|{ 0.653 1,000 1.176 1.415 1,591 1.748 1.963 2,021
RB 6.0 11.5 15.0 20.0 30.0 43.0 68.5 95.5
JH 9,5 17.5 22.0 36.0 54.0 67.0 129.0 -
1.10 VK 6.5 13.0 16.5 24.5 44,0 68.0 131.5 140.5
IN 7.0 13.0 18.0 27.5 39.0 54.0 67.0 94.0
IS 9,0 14,0 18.0 25.5 31,5 41,0 63.0 76,0
Avg(sec) 7.6 13.8 17.9 26.7 39.7 54,6 91.8 101.5
Avg-2sec |{5.6 11.8 15.9 24.7 37.7 52.6 89.8 99,5
Avg(log sec)| 0,748 1.041 1.176 1.380 1.568 1.716 1.949 1,995
RB 6.5 11.5 16,0 21.5 30.0 38.5 72.0 86.5
JH 9,5 17.0 21.5 34.5 67.5 88.5 134.5 -
1.54 VK 7.5 15.0 19,0 31.0 5.0 71.0 92.0 109.5
IN 8.5 14,0 20.0 27.5 48,0 63,0 87.5 117.5
iS 6.5 11,0 15,0 20.0 32.0 39.0 60.0 69,5
Avg(sec) 7.7 13,7 18.3 26.8 47.3 60.0 89.2 95.8
Avg-2sec |5.7 11.7 16.3 24,9 45,3 58.0 87.2 93.8
Avg(log sec)| 0.755 1.041 1.204 1.380 1.653 1,763 1.939 1,968|
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Table G,8 (continued)

Flash
32?- Log Target Luminance (mL)
(sec) Subject 2.45 0.75 0.30 -0.37 -0.78 -1,20 -1,95 =-2,12 |
RB 6.5 11.5 16.0 21,0 30.0 38.0 +66.0 91.5
JH 11.0 17.5 26.5 38.5 81.5 159.0 220.5 -
2.4 VK 8.5 15.0 20.0 33.0 47.0 89.5 95.0 138.5
JN 7.0 14.0 21.0 41.0 51.5 57.0 106,0 116.5
IS 5.5 12,5 17,0 28,0 37,0 56,0 81,0 94,5
Avg(sec) 7.7 14,1 20.1 32.3 49.4 79.9 113.7 110.3
Avg=-2 sec 5.7 12.1 18.1 30,3 47 .4 77.9 111,7 108.3
Avg(log sec) {0.755 1.079 1.255 1,477 1.672 1.886 2.082 2,033
RB 6.0 11.0 14.5 19.0 29.5 37.5 70.0 93.0
JH 9.0 19.0 25.0 60.5 73.5 102.5 154.5 -
3.4 VK 10.0 16,0 23,0 38.5 50.5 77 .0 123.0 160,0
IN 8.5 15.0 20.0 38.0 45.0 68.5 83.5 105.5
IS 4,0 10.5 15.0 18.5 23.0 27 .5 52.0 61,0
Avg(sec) 7.5 14.3 19.5 34,9 44.3 62.6 96.6 104.9
Avg-2 sec 5.5 12.3 17.5 32.9 42.3 60.6 94.6 102.,9
Avg(log sec) |0.740 1.079 1.230 1,505 1.623 1.778 1.973 2.008
RB 6.5 11.5 16.0 22.0 26.0 36.5 65.0 86.5
JH 10.0 19.0 24,0 53.0 65.0 75.0 119.0 -
5.0 VK 7.5 15.0 21,0 30.5 39.5 58.0 113.5 124,55
JN 8.0 16.5 21.0 34,0 47.0 61.0 79.5 101.0
IS 4.5 9.5 12,5 16.0  20.5 24,5 44,0 51,5
Avg(sec) 7.3 14.3 18.9 31.1 39.6 51.0 84,2 90.9
Avg-2 sec 5.3 12.3 16.9 29.1 37 .6 49,0 82.2 88.9
Avg(log sec) |0.724 1,079 1.204 1.462 1,568 1.690 1.913 1.944
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Table G,9

Recovery Times (sec)
for Log Flash Energy of 7.65 td.sec, Letter Size 16,2'
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Flash
gg?- Log Target Luminance (mL)
(msec) | Subject 2.45 0.75 0.30 -0.37 =-0.75 -1.20 =1,95 =2,12
RB 7.0  11.0 14.5 25.0 233.0 38.0 112.5 143.5]
JH 9,0 19.5 37.0 67.5 115.0 162.0 204.5 -
0.78 VK 9,0 15,0 25.0 51,5 69.0 88,5 105.5 146.,0
IN 6.0 13,0 23.0 36.5 61.0 81,0 112,5 152.0
IS 6.5 16,5 20.5 44,0 63.0 75.0 119,0 130,0
Avg(sec) 7.5 15,0 24.0 44.9 68.2 88,9 130.8 142.9
Avg-2 sec | 5.5 13.0 22.0 42.9 66.2 86,9 128,8 140.9
Avg(log sec)| 0,740 1.113 1,322 1.623 1.819 1.934 2,107 2.146
RB 7.0 12.0 17.0 33.0 39.0 57.0 97.5 155.0
TH 8.0 18.0 29.5 68.0 144,0 213.5 - -
1.10 VK 9.0 16.0 20.0 40.C 63.0 96.0 117,0 128,0
IN 8.0 15.0 21.0 45.0 54,0 90,0 127.0 147.0
1S 6.5 12,5 20,5 35,0 56.0 87.5 127.0 173.5
Avg(sec) 7.9 14,7 21.6 44.2 71,2 108.8 117,1 150.9
Avg-2sec |5.9 12,7 19.6 42,2 69.2 106.8 115,1 148,9
Avg(log sec)| 0.770 1.079 1,278 1. 1. 2. 2. 2,
RB 7.0 13.0 16.5 30.5 47.5 60.0 94.5 139.0
TH 9,0 17.5 32.0 69.0 76.0 106.5 183.5 -
1.54 VK 8.0 17.5 27.5 44.5 64,0 115,5 140.0 177.0
IN 6.5 15.0 20.5 35.5 S55.5 62.5 103.5 143.0
JS 6.0 14,0 19.0 30.0 44.0 83,5 133,0 192,0
Avglsec) 7.3 15.4 23.1 41.9 57.4 65.6 130.9 162.8
Avg-2sec |5.3 13.4 21.1 39.9 55.4 83.6 128.9 160.8
Avg(log sec)|0.726 1,113 1,322 1.591 1.740 1,919 2,107 2,204
RB 7.0 12.0 18.5 33.0 39.5 48,5 88,0 158,5
TH 11,0 25.0 37.0 83.5 122,5 159,5 236.0 -
2,4 VK 9,5 18.0 24.5 62.0 75.0 82.0 109.5 212,5
IN 7.0 16.0 21.0 55.0 63.0 83.0 126.5 146.5
I8 7.5 15,0 20,0 30.5 35.5 74.0 105.0 115,5
Avg(sec) 8.4 17.2 24.2 52.8 67.1 89,4 133,0 158,3
Avg-2sec |6.4 15.2 22,2 50.8 65.1 87.4 131,0 156.3
Avg(log sec)|0.806 1.176 1,342 1.699 1,812 1,939 2,117 2,193
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Flash
32? Log Target Luminance (mL)
(msec) | Subject 2.45 0.75 0,30 -0.37 -0.75 -1,20 -1,95 =2,12
RB 7.0 12.0 16.5 32,5 38.0 56.5 83.0 119.0
JH 9,5 23.0 29.5 69.5 111,0 127.0 140.5 -
3.4 VK 9.0 21,0 28,0 55.0 81.0 96.0 123.0 230.0
IN 7.5 18.5 24.0 53.5 68.5 90.0 100.5 155.0
IS 7.0 10.5 21,0 35.0 44.5 64.5 88.0 115.5
Avg(sec) 8.0 17.0 23.8 49,1 68.6 86.8 109,0 154.9
Avg-2 sec |6.0 15.0 21.8 47.1 66.6 84,8 107.0 152,9
Avg(log sec)| 0.778 1.176 1,322 1,672 1.819 1.924 2,029 2.181
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Table G.10

Recovery Times (sec)
for Log Flash Energy of 7.65 td.sec, Letter Size 28,.4'

Flash
32?- Log Target Luminance (mL)
- (msec) | Subject 2,45 0.75 0.30 -0.37 -0,75 -1,20 -1,95 =2,12
RB 6.5 10.5 14,0 19.5 26.5 41,0 81.0 89.5
JH 12,5 16.5 21,5 43,0 61,0 76.0 157.0 188.0
0.78 VK 7.0 14,0 18.0 22.0 32.6 85.0 100.0 182.0
IN 6.0 13,5 17,5 24,0 39.5 51,0 93.5 112,0
IS 7.0 11.0 16,0 28,0 32,5 54,5 65,0 117,5
Avg(sec) 7.8 13,1 17.4 28.3 38,3 61,5 99,3 137.8
Avg-2sec |5.8 11,1 15,4 26.3 36,3 59,5 97.3 135,8
Avg(log sec)|0.763 1,041 1,176 1,415 1.556 1,770 1.986 2.130
RB 5.5 11,5 15,5 21.0 32,0 41.0 63.5 83.5
TH 9,0 12.5 19,5 55.0 73.0 92.0 119,5 139.,5
1.10 VK 8.0 15.0 19.0 34,0 42,0 65.0 101.,0 154.0
JN 6.5 13.5 21,5 29.0 41.5 60.5 84.5 102.5
IS 5.0 8,5 17.0 31,0 34.5 53,5 94,0 113,5
Avg(sec) 6.8 12.2 18.5 34,0 44.6 62.4 92.5 118.6
Avg-2 sec |4.8 10.2 16.5 32.0 42.6 60.4 90.5 116.6
Avg(log sec) |0.681 1,000 1.204 1.505 1.623 1.778 1,954 2.064
RB 6.5 11,0 15.0 24.0 29,5 39.5 74.0 85.5
JH 8.0 1.5 21.0 42.5 54.0 65.0 102.0 121.,0
1.54 VK 7.0 14,0 17.5 28.5 50.0 79.0 103.0 156.0
IN 6.0 14,0 17.0 28.5 40.0 50.0 82.5 90.0
IS 5.5 12,0 13,5 35,0 49.5 63.5 85,5 112,0
Avg(sec) 6.6 13,3 17.8 31.7 44.6 59.4 89.4 112.9
Avg-2 sec |4.6 11.3 15.8 29.7 42.6 57.4 87.4 110.9
Avg(log sec) |0.662 1,041 1.176 1,462 1.623 1,755 1.939 2,041
RB 6.5 11,0 14,5 24,5 29.0 32.5 56.0 115.5
JH 10.5 18.0 24.0 49.0 81.5 99.0 152.0 178.5
2.4 VK 8.5 15.0 19.0 45.0 51,0 62,0 100.0 149.0
JN 7.0 15.0 19.0 30.5 42,0 64.5 91.0 102.5
JS 5.0 12,5 17,5 28,0 33,0 57.0 105.0 125.5
Avg(sec) 7.5 14,3 18.8 35.4 47.3 63.0 100.8 134.2 |
Avg-2 sec |5.5 12,3 16.8 33.4 45.3 61.0 98.8 132.2
Avg(log sec) |0.740 1.079 1,204 1,518 1.653 1,785 1.991 2,120
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Jable G,10 (continued)

Flash
Dura- Log Target Luminance (mL)
tion
(msec! | Subject 2,45 0.75  0.30 _ =0.37 =0.75 =-1.20 =-1,95 -2,12
' RB 6.5 11,0 15.0 24.5 30.5 46.5 71.5 91.5
TH 10.0 16.5 20.0 25.5 50.5 90.5 110.0 179.5
3.4 VK 7.5 15,5 20.0 35.0 58.0 63.0 87.5 136.5
IN 8.0 14.0 18.5 33.0 41.0 55.0 90.0 101.0
1S 6.5 14,0 17.0 26.0 45.5 5.0 100.0 123.0
Avg(sec) 7.7 14.2 18,1 28.8 45,1 64.0 91.8 126.3
Avg-2 sec |5.7 12.2 16.1 26.8 43.1 62.0 89.8 124.2
Avg(log sec)|0.755 1.079 1,204 1.415 1.633 1,792 1.949 2.093
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Jable G, 11

Recovery Times (sec)

for Log Flash Energy of 7.8 td.sec, Letter Size 16.2'

— e ey —

Flash
32?- Log Target Luminance (mL)
(msec) { Subject 2,45 0.75 0,30 -0.37 =-0.75 ~-1,20 =-1.95 =-2.12
RB 7.5 12.0 17.0 32.0 40.5 70.0 133.0 158.0
JH 10.5 19.5 26.5 57.0 72,5 97.0 144.0 -
1,10 VK 9.5 16.0 24.0 34.0 74.0 82.0 193.0 201.,5
IN 7.5 19.5 24.0 50.0 62.5 85.5 130.5 191.5
IS 5.5 13.0 16.5 30.0 40,0 58.5 130,0 152.0
Avg(sec) 8.1 16.0 21.¢ 40.6 57.9 78.6 146.1 175.8
Avg-2 sec |6.1 14,0 19.6 38.6 55.9 76.6 144,1 173.8
Avg(log sec) |0.785 1.146 1,278 1,579 1,740 1.880 2.158 2,238
RB 7.5 13.0 18.0 30.5 51.0 64.0 103,5 127.0
TH 11,0 19.0 27.0 54,0 77.5 106.5 223.5 -
1.54 VK 10.0 16.5 22.0 44.0 54.0 61,0 135.0 170.0
JN 9,0 15,0 21.0 43.5 57.5 72.5 153.5 207.0
18 6.0 12.5 20.0 25.0 40.0 49.0 78.5 136.0
Avg(sec) 8.7 15,2 21.6 39.4 56.0 70.6 138,8 160.0
Avg-2 sec |6.7 13.2 19.6 37.4 54.0 68.6 136.8 158.0
Avg(log sec) |[0.826 1,113 1,278 1.568 1,732 1,832 2,133 2,198
RB 7.0 15,0 18.5 36.5 52.5 66.0 106.0 126.0
JH 10.5 19.5 25.5 74.5 90.0 104.5 199.0 -
2.4 VK 10.0 16.5 22.5 36.0 45.0 104.0 142,5 158.5
IN 8.0 16,5 21,0 35.5 48.5 88.0 133.5 170.0
IS 6.0 14.0 20,0 35.0 46.0 59.0 86,0 129.0
Avg(sec) 8.3 16.3 21.5 43.5 657.2 84.3 133.4 145.9 |
Avg-2 sec 6.3 14.3 19,5 41,5 55.2 82.3 131.4 143.9
Avg(log sec) |0.799 1.146 1.278 1.612 1.740 1,913 2,117 2,155
RB 7.5 13.0 18.0 38,0 51,0 74.0 116.0 135.0
JH 10.5 20.0 30.5 61,0 80.0 125.0 - -
3.4 VK 9.0 17.5 26.0 49,0 72.5 103.0 177.5 19Y5.5
JN 8.5 16.0 21.0 37.5 53.5 66.5 110.0 143.0
IS 7.0 15.5 23.0 30.0 47.0 64.0 118.0 156.5
Avg(sec) 8.5 16.4 23,7 43,1 60.8 86.5 130.4 157.5
Avg-2 sec |6.5 14.4 21,7 41.1 58.8 84.5 128.4 155.5
Avg(log sec) ]0.812 1.146 1.322 1.612 1.763 1.924 2,107 2,190
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Flash
Dura- Log Target Luminance (mL)
tion
(msec) | Subject 2.4 0.7 0.30 =-0.37 =-0.75 =-1,20 =~1,95 =-2,12
RB 8.0 13.5 17.5 38.0 50.0 60.0 115.5 140.0
JH 12.0 23.0 32.0 60.5 98.5 126.0 278.0 -
2 VK 8.0 16.5 23.0 33.0 68.0 8l.0 157.0 194.5
Cond. IN 8.5 18.0 25.5 37.5 60.5 80.0 139.0 207.5
]S 5.5 9.0 21.0 38.0 46,0 57.0 1'1,0 125.0
Avg(sec) 8.4 16.0 23.8 41.4 64.6 80.8 160.1 166.8
Avg-2 sec 6.4 14.0 21.8 39.4 62.6 78.8 158.1 164.8
Avg(log sec)|0.806 1.146 1.322 1,591 1.792 1.892 2.198 2.214
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Table G,12

Recovery Times (sec)
for Log Flash Energy of 7.8 td.sec, Letter Size 28.4'

— —— e an e st ————

Flash
Dura~- Log Target Luminance (mL)
tion
(msec) | Subject 2.45 0.7 0.30 -0,37 -0.75 =-1,20 =-1,95 =2,12
RB 6.5 13.¢ 17,5 30.5 37.0 47.0 90.5 99.5
JH 10.5 17,0 21,5 37.0 55.0 84.5 123.0 141,0
1.10 VK 7.0 13.0 17.0 29.0 47,5 63.5 90.0 124.0
IN 8.0 13.0 16,5 29.5 36.0 57.5 79.5 120.5
IS 4,5 11.0 15.0 23,0 31,0 44.0 75,5 92,5
Avg(sec) 7.3 13.4 17,5 29.8 41,3 59,3 91,7 115,5
Avg-2 sec |5.3 11.4 15,5 27.8 39.3 57.3 89.7 113,5
Avg(log sec)} 0.724 1,041 1,176 1,431 1,591 1,755 1.949 2,053
RB 7.5 11.5 15,0 25.0 36.0 47.0 81.5 100.0
JH 10,5 16.0 24.0 39.0 70.5 96.5 142.0 245.0
1.54 VK 7.0 15.0 - 34.0 50.0 67.0 110.0 118.0
IN 7.5 12.0 19.5 24,5 39.5 62.5 89.0 114.,0
]S 6.0 10,0 19,0 27.0 47.0 58,0 78.5 100.5
Avg(sec) 7.7 12.9 19.3 29.9 48.6 66,2 100.2 135.5
Avg-2sec |5.7 10.9 17.3 27.9 46.6 64,2 98.2 133.5
Avg(log sec)|0.755 1,041 1.230 1.431 1.662 1.806 1.991 2,123
RB 7.5 11,0 14,5 24,0 33.5 48,5 80.5 87.5
JH 10.0 19.5 25.0 41,5 58.0 79.5 136.0 182.0
2.4 VK 8.0 13.5 20.0 38.5 53.5 61.0 135.,0 161.5
IN 6.5 14,0 18.5 30.0 40.0 53.0 95.0 104.0
1S 6,0 12,0 17,5 22,5 29,0 39.0 54,0 61,0 |
Avg(sec) 7.6 14,0 19.1 31,3 42.8 56.2 100,1 119,2
Avg-2 sec (5.6 12.0 17.1 29,3 40.8 54,2 98.1 117,2
Avg(log sec) |0.748 1,079 1,230 1.462 1,602 1.732 1,991 2,068
RB 8.0 12,5 17.0 24.0 34.0 44.0 83,0 101.5
IH 9.5 16,5 22.0 44.5 57.5 79.5 116.0 151.0
3.4 VK 11.0 16,0 24.5 34,0 55.0 85.0 131.5 186.5
IN 7.5 14,0 19,5 33.5 40.0 55.0 91,5 197.5
IS 5.8 11.0 16.0 21,0 33,0 44.0 71.0 88.0
Avg(sec) 8.3 14,0 19.8 31.4 43,9 61,5 98.6 126.9
Avg-2sec |6.3 12,0 17.8 29.4 41,9 59.5 96.6 124.9
Avg(log sec) |0.799 1.079 1,230 1.462 1,612 1.770 1.982 2.093
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Takle G-12 (continued)

Flash
Dura- Log Target Luminance (mL)
tion
(msec) | Subject 2.45 0,75 0.30 _=0.37 =0.75 =1.20 =1.95 =2.12
RB 7.5 12.0 18.5 26,5 33.0 52.5 89.5 105.5
JH 9.5 18.5 23.5 45.0 58.0 82.0 118,0 145.0
2 VK 10.0 15.5 20,5 45.0 5§8.5 63.5 135.0 140,55
Cond, JN 8.0 16.0 20.0 28.5 35.5 51.0 91.0 101.5
IS 4,0 12,0 17,0 23,0 38,0 43,0 74,0 81.0 |
Avg(sec) 7.8 14.8 19.9 33.6 44.0 58.4 101.5 114.7
Avg-2sec []5.8 12.8 17.9 31.6 42,0 56.4 99.5 112.7
Avg(log sec)}{ 0,763 1.079 1,230 1.491 1.623 1,748 1,995 2.049
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Appendix H - Russell (322

Russell's Figure 2 is part of our Figure 1.
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Appendix I ~ Severin, et al. (40, 41)

Severin 53 al's Table I was converted to Table I.1l

and is plotted in Figure 2.

I-1




Time . |

Jablel.]l

Log Recovery Times (mean of four subjects)

Testing Patch
Brightness

Calculated Adapting Source (Diffusing Screen)
Luminance x Flash Duration

(Target Luminance) Lamberi.sec

ft.L mL log mL 0.0351 0.288 0.585 1.46 3.06

0.06 .065 -1.119 0.564 0.722 0.800 0.905 1,125

0.013 0.014 ~-1.854 0.896 1.081 1.268 1,381 1,572
I-2
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Appendix J - Whiteside & Bazarnik (5k)

Five curves were fitted by eye to Whiteside and
Bazarnik's Figure 6. The five curves, plus one
already fitted by Whiteside and Bazarnik, were

converted to Table J.l. Our Figure 6 is plotted

from J.1.

J=1
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dable J,1

Recovery Times from Different Degrees of Stimulus to
Three Brightness Levels of Test Object

Recovery Times (log sec)
Adapting Foveal | Peripheral
Flash Energy Display Luminance (log mL)
(Lambert-seconds) [+0.703 -0.968 -1.492 +0.703 -0.968 -1.492
3.14 x 10° - - 1.57 - - -
1.57 x 10° - - 1.78 - - -
3.14 x 10° - - 1.84 - - -
9.43 x 10° - 1.40  1.94 - - 1.04
1.57 x 10° - 1.43  1.99 - 1.00  1.32
3.14x 10° - 1.48  2.02 - 1.08  1.52
6.28 x 10° - 1.52  2.08 - 1.15  1.65
1.57 x 10% - 1.61  2.10 - 1.32 1.8l
3.14 x 10° - 1.70  2.20 - 1.43  1.98
6.28 x 10 1.26  1.84  2.43 1,15 1.57 2,20
9.43 x 10° 1.30 1.93  2.60 1.20 1.70  2.35
1.57 x 10° 1.36  2.30  3.00 1.26 2,00  2.72
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Appendix K - Whiteside (53)

Whiteside (53) presents tebular data of a field trial
with an actual nuclear explosion and a curve (Figure 13)
comparing other experimenters' results with his field
trial and with his experiment using a modified calibra-
tion source. Whiteside's data were transformed into the
following two tables. Table K.l presents the results of
the field trial and was presented earlier as Table II.
Table K.2 presents the results of the experiment with the

modified celibration source.




able K,1
LY
Foveal Recovery Time Fireball
Adaptometer Recovery thru Fireball Luminance
_— Luminance | Time Afterimage Integrated to
ft.L mL log mL | log s:zc log sec 100 msec
1.0 1.12 0.049 0.70 1.45
0.41 0.44 -0.356 1.23 1.60 5“‘33x108 1.382x104
td.sec L.sec
____0_..14 0.1 =0.824 1.76 1.95 _
Table K, 2
Modified Calibration Source
Luminance Recovery Target
candles log Time Luminance
cm sec | td.sec td.sec log sec ft.L mL
20 2.51x10°  |6.40 1.45
7.1 | 8.92x10° |5.95 1.20 0.14 0.15
5 6.28x105 5.80 0.84
K-2
T Trmesme = — T - g —" v ; R -
e o . e e s+ —ma i i - ki M M




Appendix L - Severin, et al, (42)

Their Tebles 3 and T present the mean recovery times of

15 subjects for three different cormneal illuminances

(in lux) for target luminances of 0.06 f£t.L and 0.013 ft.L,
respectively, and under large or small pupil conditions,

In order to plot Figure 11, Tables 3 end T were transformed
into Table L.l by calculating the source luminances in
candles/ma. It was assumed that the experimental set-up
was identical to that described in (40). The mean small
pupil diameter was 2.20 mm; the mean large pupil diameter

was T.43 mm.




L-1
Calculated
Adapting Source
Luminance
Calculated X Flash Duration Mean Recovery
Adapting Source X Pupil Area Times
Corneal Luminance Small Large Small Large Target
Illumination Candles/ Pupil Pupil Pupil Pupil | Luminance
(Lux) M2 log td.sec log td.sec| log sec log sec mL
86,080 7.93 x 10° k753 5.807 0.948 1.019
150,640 1.74 x 105 5.000 6.050 1,090 1,173 0.065
242,100 2.79 x 10° 5.202 6.256 1,227  1.441 "
86,080 | 9.93 x 10° 4,753 5.807 1.298  1.249
150,640 1.74 x 10° 5.000 6.050 1,444 1.446 | 0.014
242,100 2,79 x 10° 5.202 6.256 1.564 1.648
L-2
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APPENDIX M
CALCULATION METHOD

The Multiple Linear Regression Program will compute the coefficients
providing the best fit for a set of observations by an equation of the
form:

Y =Dy + 01Xy + Xy + o o o+ bk,
where Y is the dependent varisble; X,, X5, . . . , X, are the inde-
pendent variables; and bo, bl’ b2’ e » o« b are the coefficients to
t. determined. The regression also provides statistical quantities
giving a measure of the reliability of the computed coefficients.
The Regression Program can be used to fit non-linear equations of
the forms:

Y =Dy + byFy(2)) + bofa(Zy) + 0 o+ B f(Zy,020, o . . Zy)
This equation is made equivalent to the simple linear equation (above)
by the substitution (or transformation):

X, = £,(2)

X = £5(2Z5)

X = (2, Zos vee Zy)
This Regression Program uses the stepwise procedure outlined by M. A.

Efroymson in Mathematical Methods for Digital Computers, John Wiley

and Sons., 1960. In this stepwise procedure, intermediate regression
equations are obtained as well as the final equation, These equations
are obtained by adding one variaesble at a time giving the following

intermediate equations:




Y = bo + blxl

Y = b'o + b'lX'l + ' X!

2 v

x"2 + bll }{"

2
2 33

= B" "oy -
Y=25% 0 +b lx’l + v

In this manner it 1s possible to obtain valuable statistical results
at each step of the calculation. These intermediate results may be
used to control the succeeding calculation since the next variable
added is the one which mekes the most improvement in the fit., A
variable mey also be removed from the fit if it drops below the speci-

fied significance level.
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EQUATIONS

The equations presented in this section represent the specific calculation

method as used by this program.

PHASE I EQUATIONS

1, LEAST SQUARES (PRODUCT MOMENT) MATRIX

The general term of the matrix is:

The matrix is stored in upper triangular form by the program and the specific

terms are:

2
le Xz X X, S X, X, < X, X,

2
X, T XX, > XoX, -
2
X .
2
> X . . .
4

2. VARIANCE - COVARIANCE MATRIX

The general term of the matrix is:

.Z(XI-L)(X_‘]-X_'L)

Cov
i, N-1

This matrix is also stored in upper triangular form by the program,




3. _ MEANS

X, - 3 Xy
N

4, STANDARD DEVIATION

- - 2
_IZ (X1 - R4) (X4 - X4) _ | X (X1 - X4)
T, ¥ N - 1 N - 1

5,  SIMPLE CORREIATION MATRIX

The general term of the matrix is:

COVL1
r =
i,
S PR

This matrix is also stored in upper triangular form by the program.

PHASE II EQUATIONS

1, DEF INITIONS
k - Dependent variable index
j = independent variable index

Zg,j - Working matrix element

2. RESIDUAL SUM OF SQUARES

2
RSS = Zy 3 Ty (N-1)

3. STANDARD ERROR OF REGRESSION EQUATION

SEE = RSS_
Degrees of freedom

M-4
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4, DEGREES OF FREEDOM

DOF = Sum of weights - Number of pivots - 1

J. INITIAL SUM OF SQUARES

Iss-trf< o™ - 1)

6. REGRESSION SUM OF SQUARES

RGSS = ISS - RSS

7. COCFFICIENT OF DETERMINATION @2)

RR=1 - RSS
ISS

8. COEFFICIENT OF REGRESSION EQUATION

T
B = 7 k
j k’j q—j

9. STANDARD ERROR OF REGRESSION COEFFICIENT

ER _ SEE

SRC. = I N——
N -

j Ty e

10, F-STATISTIC

2
F,om (B
] \ SRC,




T —

i 11, PARTIAL CORREIATION COEFFICIENT

k,)

12. CONSTANT TERM
C =X - Z bXy
13. CALCULATED VALUE
A - -
Y= (X -~ b, X,) + b.X
(k Z i1 Z 174
14, RESIDUAL

~
RES = Y - Y
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